
Accelerating Robot Trajectory Learning for Stochastic
Tasks

Vidakovic, Josip; Jerbic, Bojan; Sekoranja, Bojan; Svaco, Marko; Suligoj,
Filip

Source / Izvornik: IEEE Access, 2020, 8, 71993 - 72006

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1109/ACCESS.2020.2986999

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:002695

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering 
and Naval Architecture University of Zagreb

https://doi.org/10.1109/ACCESS.2020.2986999
https://urn.nsk.hr/urn:nbn:hr:235:002695
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.fsb.unizg.hr
https://repozitorij.fsb.unizg.hr
https://repozitorij.unizg.hr/islandora/object/fsb:10793
https://dabar.srce.hr/islandora/object/fsb:10793


Received March 16, 2020, accepted April 1, 2020, date of publication April 9, 2020, date of current version April 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2986999

Accelerating Robot Trajectory Learning
for Stochastic Tasks
JOSIP VIDAKOVIĆ , BOJAN JERBIĆ, BOJAN ŠEKORANJA, MARKO ŠVACO, AND FILIP ŠULIGOJ
Department of Robotics and Production System Automation, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb,
Croatia

Corresponding author: Josip Vidaković (josip.vidakovic@fsb.hr)

This work was supported in part by the Croatian Scientific Foundation through the Young Researchers’ Career Development
Project—training of new doctoral students, in part by the CRTA—Regional Centre of Excellence for Robotic Technologies Project, in part
by the Centre of Excellence for Autonomous and Cooperative Robotic Systems—ACROSS, and in part by the NERO—Neurosurgical
Robot Project.

ABSTRACT Learning from demonstration provides ways to transfer knowledge and skills from humans to
robots. Models based solely on learning from demonstration often have very good generalization capabilities
but are not completely accurate when adapting to new scenarios. This happens especially when learning
stochastic tasks because of the correspondence problem and unmodeled physical properties of tasks. On the
other hand, reinforcement learning (RL) methods such as policy search have the capability to refine an
initial skill through exploration, where the learning process is often very dependent on the initialization
strategy and is efficient in finding only local solutions. These two approaches are, therefore, frequently
combined. In this paper, we present how the iterative learning of tasks can be accelerated by a learning from
demonstration (LfD) method based on the extraction of via-points. The paper provides an evaluation of the
approach on two different primitive motion tasks.

INDEX TERMS Learning from demonstration, policy search, robot task learning, robot trajectory.

I. INTRODUCTION
When trying to enable a robot to learn a task on the trajectory
level, two main methods exist: Learning from Demonstra-
tion (LfD) methods and reinforcement learning (RL) meth-
ods. The LfD methods try to model human demonstrations
into various statistical or dynamical models that aim at rep-
resenting robot trajectories. On the other hand, RL meth-
ods use the robot exploration to find feasible policies for a
given state space. The main challenge in LfD is to extract as
much information from the demonstrations as possible and to
encode generalizability into the model. In an ideal scenario,
LfD can generalize a demonstrated task across the entire
state-space. Task parametrization is a commonly used way to
encode generalization capabilities into a trajectory model [1],
[2], [3]. In the light of encoding generalizability, approaches
that encode coupling terms into statistical models are shown
in [4], [5] and [6]. Another group of approaches are those
that automatically extract reward functions from demonstra-
tions and optimize the trajectory with respect to them [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

Learning from demonstration can be used with motion plan-
ning approaches in order to define the optimization criteria
for motion planning algorithms [8], [9]. Researchers also
try to provide complete solutions for robot learning, includ-
ing the high level decomposition of robot tasks while also
performing low level trajectory learning [10], [11]. We can
include here end-to-end learning methods based on deep
learning; these methods try to further minimize the required
human engagement in the learning setup [12], [13].

Traditional reinforcement learning methods, on the other
hand, rely on the state-value or action-value functions. As a
model explores the whole state/action space, value/action
functions are updated and a generalizable model is obtained
[14]. The model can output an optimal policy for any given
state. In robotics, however, state spaces are not determin-
istic. They are usually very large and complex; therefore,
it is not often possible to explore them in such a way that
a feasible function landscape can be provided. Tasks that
involve continuous motion execution, as most robotic tasks
do, require continuous action spaces. A robotic arm with
six degrees of freedom has six action spaces, while the
dimensionality of state spaces is dependent on a particular

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 71993

https://orcid.org/0000-0001-6189-1730
https://orcid.org/0000-0002-8596-1972


J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

task. Thus, the popular curse of dimensionality phenomenon
makes most of robotics-related problems impossible to learn
by reinforcement learning in a generalizable way.

Another RL approach are policy search methods. These
methods do not need to update the whole state-value or state-
action space. Instead, only the current policy parameters are
updated by performing rollouts [15]. This proved to be a
good option for robot trajectory learning models because it
does not require modeling of the system dynamics (transition
probabilities). Some of the most famous policy search meth-
ods are gradient-based methods, such as REINFORCE [16],
the path-integral PI2 algorithm [17] and the Expectation-
Maximization (EM)-based PoWER algorithm [18]. Policy
search methods can be divided into black-box (BB) methods
and white-box methods [22]. The difference between these
two is that the black-box methods do not use any struc-
ture provided with the RL framework. This brings us to the
main challenge of RL algorithms, i.e. the construction of
a reward function. This process often re-quires a detailed
analysis of the task and the design of a quantitative measure
for important features. We distinguish two main strategies
of reward functions, continuous (immediate) rewards and
sparse rewards. The continuous reward functions, such as
the REINFORCE and PI2 algorithms, consider rewarding
strategies that evaluate the policy during its execution time.
The sparse reward approaches evaluate the policy only at the
end, with a single reward value for the entire episode/rollout;
this is characteristic of the BB policy search methods. In [19],
it is shown that the BB optimization strategies can outperform
thewhite-box, derivation-based strategies. An established BB
optimization algorithm is CMA-ES which is used for policy
search in many robotic applications.

A downside of the policy search methods is that they are
suitable only for the local exploration of continuous action
spaces. This prevents them from providing globally general-
izable solutions on their own and makes the search process
very dependent on the initial conditions. It is common prac-
tice to perform the initialization by human demonstrations.
If a motion has to be learned, the learning is mostly initialized
via kinesthetic teaching in order to minimize the correspon-
dence problem. Examples of initializing RL algorithms with
demonstrations can be found in [21] - a pancake flipping
task, [22] - ball-in-cup task, [23] - table tennis movements,
[24] – ironing and door opening, and [25] - dart and ball
throwing. In most of these examples, generalization, if con-
sidered, is handled by the RL algorithm, e.g. by updating
value functions.

In this paper, we propose a different approach, in which
generalization is performed by an LfD method while the RL
policy search is used to refine the movement for different
situations. Our approach is presented as a framework for
low level task-oriented trajectory learning. It combines the
LfD method with the policy search algorithm; the former
extracts information from demonstrations in order to provide
the latter with a good initial trajectory. Using the black-box

optimization strategy, we simplify the setup and make it
applicable to a wide range of robotic tasks.

While the task-parameter approaches and the approaches
that encode generalizability into statistical models ([4], [5],
[6]) can encode information from demonstrations, they can
suffer from locally optimal behaviors. The performance of the
robot learner can be in the best case only as good as the perfor-
mance of the teacher and cannot adopt a broader perspective
on the solution space. On the other hand, the approach pre-
sented here is more similar to the reward-oriented approaches
([7]). It makes use of LfD to provide the robot with a good
starting point for self-exploration in the policy search phase.
The self-exploration process is only restricted by the initial
learning rate and a simple task-oriented (result-oriented) cost
function, but it is completely free in terms of exploring all
parameters of the policy space. This leads to a more cre-
ative learning process, in which unorthodox solutions may be
achieved.

II. METHODOLOGY
People initially transfer skills by demonstration: a teacher
demonstrates a task to one or more apprentices and gives oral
explanations inmost cases. Such information serves as a good
starting point for mastering a particular skill. After this initial
phase, the learner is usually not able to accurately reproduce
the skill autonomously. Therefore, he has to perform some
trials on its own to fully grasp all parameters of the task
during execution, where the number of trials depends on the
circumstances such as the task complexity and the previous
knowledge. Inspired by this, we have developed a framework
for robot learning, which utilizes the LfD approach for the
learning of an initial trajectory. This initial trajectory is then
used as a starting point for the learning process refinement,
where the robot tries to perform a task on its own. The
proposed learning process will be described in the sections
below.

A. DEMONSTRATION ANALYSIS AND TRAJECTORY
GENERATION
Because of their local optimization behavior in robotics, pol-
icy search methods must be initialized by meaningful initial
trajectories. When collaborative robot arms are considered,
hand-guiding is a very popular way to do it. A human demon-
strator holds the robot (or controls it indirectly via some tele-
operation device) and guides it to perform a demonstration
of the task. Such a movement is then used to calculate initial
parameters of the movement policy.

The demonstration is usually done for only one specific
situation. This way of initializing a trajectory is very good
for individual cases but does not provide generalization capa-
bilities. Tasks can have large state spaces, and only one
demonstration can be insufficient to achieve the extraction of
important features in the task space. This is the reasonwhywe
proposed to use a relative coordinate frame analysis presented

71994 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 1. Flowchart of the proposed method. Learning is initialized by LfD.

FIGURE 2. Classification of coordinate frames by using demonstrated trajectories. Left – an object with coordinate frames of interest.
Right – coordinate frames of interest with respect to demonstrated trajectories.

in [26] to construct a generalized robot trajectory for every
new configuration of the task space.

The method is explained in detail in [26], and we will
describe it here only briefly. It uses a number of demon-
strated trajectories (M ) of a task and transforms them into
coordinate frames of interest, where one object can have
multiple frames N (Fig.2). The demonstrated trajectories are
resampled to achieve the equal spacing of trajectory-position
points (coordinate frames). The Euclidian distance from the
frame of interest to every sampled demonstration point is
calculated and an M × N distance matrix {{d}Nn=1}

M
m=1 is

constructed for every coordinate frame of interestPn. The dis-
tance matrix is then element-wise weighted by an exponential
kernel function {{dw}Nn=1}

M
m=1 = xd , where x ∈ {0.1 . . . 1},

that returns higher values for points closer to the coordinate
frames of interest. Finally, the element sum of the weighted
distance matrix gives a scalar value that describes the activity
of a coordinate frame in the robot workspace given by the
demonstrations.

Based on this scalar value and thresholding, coordi-
nate frames can be classified into attractor frames, non-
attractor frames and rejection frames. The attractor frames
can then be used as via-points in order to construct a
trajectory.

B. TASK OPTIMIZATION
In the same way as the knowledge obtained from observing
a good teacher, a good initial trajectory should bring a robot
close enough to the completion of a task. However, because
of the correspondence problem, certain inaccuracies usually
exist. Therefore, we perform an additional learning step based
on the RL policy search.

In policy search, some of the most often used parametric
policies for trajectories are via-points and splines, linear mod-
els, motor primitives, Gaussianmixture models (GMMs), and
neural networks [22], [15]. In this study, we will focus on
tasks that can be solved using primitive motions. These are
movements with specified start and end points and with only
one acceleration and one deceleration. Therefore, we will
parametrize our policies using motor primitives, more specif-
ically the Dynamic Movement Primitives (DMP).

The DMPs are considered as one of the best trajectory poli-
cies for learning [27]. They consist of a dynamical attractor-
point system for every degree of freedom separately; they
are then synchronized by an exponential decay function
ṫ = −αx · t that serves as a central clock, where αx is the
parameter that defines the falling rate of the decay function.
Every dynamical system is influenced by a nonlinear function
which is responsible for the shape of the trajectory. These

VOLUME 8, 2020 71995



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 3. Block diagram of the proposed methodology.

nonlinear functions are parameterized by radial basis func-
tions and their weights. Weights of the radial basis functions
can be altered to achieve different shapes of the trajectory
while maintaining its smoothness. This makes a DMP tra-
jectory suitable for iterative learning in robotic applications.
However, in order to generate a via-point trajectory, which
is defined by the Cartesian states, we firstly use a slightly
modified version of DMP, which is adapted from [28]. The
acceleration of the system is calculated based on the sum
of K proportional-derivative systems where K represents the
number of states (or via-points), y and dy the current position
and the velocity of the system, respectively and ay and by are
the gain parameters.

ˆ̈y =
∑K

i=1
hi(t) · ay

[
by (µi − y)− ẏ

]
(1)

The time function is coupled with the dynamics of the system
through a set of K Gaussians N (t;µti , 6i) with equally dis-
tributed centers over the period from zero to one where each
of the Gaussians corresponds to a state in µ, where states are
usually the Cartesian coordinates or joint positions. The time
dependent probability that should be in a state is given by:

hi (t) =
N (t;µti , 6i)∑K
k=1N (t;µtk , 6k )

(2)

In order to transform this representation into a classical DMP
as formulated in [27], weights of the radial basis functions are
learned through a regression step, which is the most standard
way of learning a DMP.

For task optimization, we conduct policy search using
these weights as (initial) inputs. The search is based on the
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), which is an evolutionary black-box optimization algo-
rithm suitable for optimizing non-linear stochastic functions
with a large number of parameters [29]. The CMA-ES algo-
rithm is used when derivative-based optimization methods
fail due to discontinuities or unpredictable changes in the

search landscape. This algorithm is adapted from [6]. CMA-
ES is based on the principles of recombination and mutation
combined with selection. In each iteration, only the best
individuals become available as parents for the next iteration.
The covariance matrix adaptation method is responsible for
updating the search distribution, which is here represented by
a covariance matrix. The algorithm has one open parameter
and that is the initial step size.

III. SYSTEM SETUP
The system setup used for the validation of the presented
methodology consists of two main parts, the demonstration
and the task optimization setup. The experiments are per-
formed with a UR5 robotic arm.

A. DEMONSTRATION SETUP
For the sampling of demonstrations, the positions of objects
of interest are tracked using a Kinect 2.0 vision system and
marker tracking. Trajectories of valid task executions are
demonstrated by a human operator using kinesthetic teaching
in the gravity compensation mode of the UR5. These trajec-
tories are sampled at a fixed time rate (100 Hz) and logged on
an external PC in the form of arrays of six-dimensional poses,
together with the positions of the tracked objects.

B. TASK OPTIMIZATION SETUP
In this section a setup to test the proposed approach for
iterative learning is presented (Fig. 3). The system is initial-
ized by extracting the weights from the initial trajectory. The
initial trajectory is then executed to evaluate its performance;
in turn, it is used as a starting point for the search pro-
cess. In every other iteration, the trajectory is refined by the
search algorithms (CMA-ES) to obtain lower costs of the task
execution.

The agent that executes the trajectories in every itera-
tion is a UR5 robot implemented in the physics simulation

71996 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

environment of Gazebo, where it interacts with the environ-
ment in order to perform a task. At the end of every robot
movement, the outcome is evaluated using a cost function,
which is minimized using the policy search algorithm. In
general, cost/reward functions that are defined in the same
space as the searched policy are expected to give best results
when compared to scenarios where there is a mismatch
between these two spaces [20]. As the task cost-functions are
intuitively defined in the Cartesian space, the search process
for trajectory improvement is also conducted in that space.

The robot trajectory controller used for the UR5 robot in
Gazebo operates only in the joint-space which is the reason
why after determining a new DMP trajectory, an inverse
kinematic solver is used to obtain a trajectory sequence in
the joint space.

When searching in the Cartesian space (operational space),
the joint space constraints have to be considered explicitly in
order to obtain feasible solutions that can be performed on
a real robot manipulator. In our approach, we conducted the
search by considering the task-oriented cost in the Cartesian
space and the existence of kinematic solutions for the robotic
manipulator used. Trajectories that had poses with no inverse
kinematic (IK) solutions were penalized by a high cost and
therefore neglected. When solving the IK problem for the
Cartesian trajectory, all configuration solutions are consid-
ered at the start of the trajectory, and the joint configuration
with the lowest maximum joint acceleration throughout the
trajectory is used for task simulation. Additionally, the thresh-
old values of the maximum acceleration and velocity are used
(80 ◦/s2, 60 ◦/s), while trajectories exceeding these values are
penalized.

IV. RESULTS
The methodology was tested on two robotic tasks. In these
tasks, the policy search algorithm was tested on two ini-
tialization strategies. The first involves a linear initialization
strategy and the second uses the LfD approach. The linear
initialization is performed by simply constructing a trajectory
that goes from the start position of the robot to the final
position of the task.

Although the presented tasks seem to be three dimen-
sional, the policy search algorithm optimized all six degrees
of freedom (DOF) at once in all experiments. The DMPs
for every DOF consist of 10 basis functions, each having
its own weight parameter that serves as an input to the
optimization algorithm. This gives a total number of 60
parameters.

To evaluate the learning processes, we will use two cri-
teria. The first one is the best solution obtained until the
current iteration Cbest , according to the smallest cost for the
task execution, where n is the current iteration number. This
enables the evaluation of the learning processes in terms of
time (iterations) needed to achieve the best solution and the
quality of the best solution.

Cbest = min(Costncurrentn=1 ) (3)

The second criterion is the mean task-cost value observed
until the current iteration Cmean. This criterion proved to be
useful when analyzing the whole process of learning. A bad
initialization of the policy search algorithm and poorly set
exploration rates will lead to higher mean cost values.

Cmean = mean(Costncurrentn=1 ) (4)

To validate the methodology while maintaining relatively low
simulation time (less than one hour), the learning time in all
experiments was 300 iterations. This number of iterations
proved to be sufficient for the learning of satisfactory solu-
tions in both tasks. In more complex tasks, the number of
iterations can be increased.

In order to ensure the validity of a trajectory and to avoid
false-positive solutions, we use multiple rollouts (three) in
every episode, so that the average of the cost can be calculated
for every trajectory. This provides a more stable learning
process as a whole.

The initial step size for the CMA-ES algorithm is essen-
tially the standard deviation of a search distribution for every
parameter in the search space. In our tests, it was tuned man-
ually for both tasks. The benchmarks for this process were
the tasks with the linear initialization strategy. We started
with small step sizes and increased them until the CMA-ES
algorithm was able to provide sufficient exploration, without
giving kinematically useless trajectories. When a suitable
amount of exploration was observed for the linear initializa-
tion strategy, we divided those learning rates by a factor of 4
for the LfD initialization case. This empirically based choice
of learning parameters proved to be reasonable for the two test
cases. For the peg-in-hole task, the initial standard deviation
was set to 50 for all parameters, while for the sweeping task
it was set to 1. This big difference is due to the fact that the
linear trajectory of the peg-in-hole task was very far from the
solution trajectory.

At the end of each task subsection we tested the learned
trajectories on the real UR5 robot. During the optimiza-
tion process of task learning, the robot kinematics in
terms of reachability, acceleration and velocity in the robot
joint space is considered in the same way as explained
earlier.

A. PEG IN HOLE
In the first example, we tested our approach on a common
robotic manipulation task. The goal of the peg-in-hole task is
to place the peg into the hole without colliding with the box
that contains the hole. The setup of the peg-in-hole task can
be seen in Fig. 4.

The cost function has two goals. The first one is not
to move the box during the insertion of the peg. The sec-
ond goal is to place the peg into the hole as close as
possible to the target point. Therefore, the cost function
Cpih is defined as a combination of the moved Euclidean
distance of the box and the Euclidean distance of the
final robot tool center point pose from the target point of

VOLUME 8, 2020 71997



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 4. Peg-in-hole simulation setup and the sequence of the final learned trajectory.

FIGURE 5. Initial trajectory (left) and the best learned trajectory (right) for the peg-in-hole task.

the hole.

Cpih
=‖Pbox final − Pbox initial‖+‖Pcenter of mass−PTCPfinal‖

(5)

In the policy search learning process, only the DMP
weights and the goal position of the robot trajectory are used
as learning parameters.

B. LINEAR INITIALIZATION
In the first test case, the LfD step was left out. Instead, the
task optimization conducted using the policy search algo-
rithm is initialized with a linear trajectory. This trajectory is
constructed by assuming a linear movement from an arbitrary
starting position to the known target position while keeping

the orientation constant throughout the motion. Such a trajec-
tory can be seen in Fig.5.

Because of the stochastic nature of the task (small changes
in the trajectory parameters can result in unpredictable cost
values), the task-oriented optimization process results in a
stochastic learning process (Fig.6.). When evaluating the
learning process through the current best solution, the best
solution is found after approx. 125 iterations (Fig.6.). This
solution results in a DMP trajectory that can perform the task
with zero cost. The trajectory itself is shown in Fig. 5.

C. INITIALIZATION WITH LFD
The second test case involves the construction of the initial
trajectory using the presented LfD approach. Demonstrations

71998 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 6. Raw cost values obtained in the learning process (left). Best current solution cost values obtained in the learning process (right)
for the peg-in-hole task.

FIGURE 7. Demonstrations and classified attractor points for the peg- in-hole task. Left – individual demonstrations. Right – all the
demonstrations in the same coordinate frame, together with the classified attractor frames (blue).

of the task for different task configurations were captured
(Fig. 7.) and the analysis of the activity coordinate frames
was performed according to the methodology described in
section II.A.

Besides the default coordinate frame of the hole, an addi-
tional via-point coordinate frame was added to the trajectory
based on the LfD coordinate frame analysis. By having the
goal defined in the base of the hole and an additional approach
via-point, the initial DMP trajectory can be constructed from
any starting point. An example of the initial trajectory is
shown in Fig. 8. – left.

The results of the policy search learning process initialized
by such a trajectory are shown in Fig. 9. Looking at the
best current solution metric, one can see that a valid solution
for the task was found after approximately 60 iterations,
which is significantly better than in the case of the linear

initialization strategy. In terms of the quality of the solutions
achieved with and without LfD, it is found that both solu-
tions are approximately the same and both successfully solve
the task.

To evaluate the stochastic learning processes obtained by
the policy search algorithm, we use the proposed current
mean cost criterion. When comparing the learning processes
for the two initialization strategies by means of this metric,
it can be observed that the LfD initialization provides bet-
ter solutions, on average, during the whole learning process
(Fig. 10.).

D. EVALUATION ON THE REAL ROBOT
We evaluated the simulation results on a real robot by per-
forming the best learned trajectory in the joint space of the
UR5 (Fig. 11.). The peg-in-hole task is dependent only on

VOLUME 8, 2020 71999



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 8. Initial trajectory (left) and final trajectory (right) for the peg-in-hole task.

FIGURE 9. Raw cost values obtained in the learning process (left). Best current solution cost values obtained in the learning
process (right).

FIGURE 10. Comparison of the mean cost values for every iteration
obtained during the learning process with linear initialization and the
learning process with initialization performed with classified attractor
frames as via-points.

the position of the hole and the robot trajectory, which makes
it feasible for testing on the real robot. The learned trajectory
performs the task successfully.

E. SWEEPING TASK
The second test case is the sweeping task. Here, the goal
is to sweep a box lying in any of possible positions into
a strictly defined position and orientation on the table. The
robot is equipped with a simple rigid plate extension which
can be utilized for pushing the box across the table. The cost
function is here defined simply as the final distance of the
final position of the swept box from the target position.

Csweeping
=
∥∥Pbox target − Pbox initial∥∥ (6)

Because of the specific nature of the sweeping task, which
involves environment factors like friction, we increased the
search space. We added the starting pose and the target pose
of the movement together with the movement velocity to the
learning parameters. Together with the DMP weights, this
leads to a total of 73 parameters.

F. LINEAR INITIALIZATION
Linear initialization is performed by creating a linear trajec-
tory from the starting pose of the robot to the target pose

72000 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 11. Sequence of motions for the peg-in-hole task performed by the UR5 robot.

FIGURE 12. Final learned movement for the sweeping task. Left – box position and robot configuration at the start of the
movement. Center – center of the movement. Right – end of the movement.

which is defined by the task-specified target destination of
the sweeping movement, while maintaining a constant start
orientation as shown in Fig. 13.

In the same way as in the peg-in-hole task, the sweeping
task has proven to be very stochastic, which means that the
margin for errors is very narrow. Starting from the linear
trajectory, the policy search process is capable of finding a
trajectory that solves the task after 130 iterations (Fig. 14.).
The solution, however, relies on a trajectory with a relatively
fast movement, where the robot does not follow the box
throughout the entire path.

G. INITIALIZATION WITH LFD
Following the same methodology as in the peg-in-hole task,
the sweeping task optimization policy search process is also
initialized with a trajectory obtained from the LfD pro-
cess. The sweeping task was demonstrated three times from
various task configurations. The coordinate frame analysis

was able to extract one additional via-point for both the target
position and for the object position as the same approach
pattern appeared in all demonstrations (Fig. 15.).

The initial trajectory constructed using two additional via-
points for a new situation is shown in Fig. 16, together with
the final learned trajectory. The policy search optimization is
able to generate a good solution here after only 30 iterations
(Fig. 17.).

By looking for the best current solution metric, conver-
gence is achieved very quickly with a better quality of the
obtained solution than that obtained with the linear initializa-
tion strategy.

The average solution metric also shows significantly better
results of the learning process as a whole when the LfD
initialization is used.

It can be observed that the final cost for both initialization
strategies applied in this task does not converge to zero.
This happens due to the fact that the sweeping task is not
constrained in any direction of the movement (no guidance)

VOLUME 8, 2020 72001



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 13. Linear initial trajectory and the best learned trajectory for the sweeping task (left). The best learned trajectory
with respect to the initial box position and the target position (right).

FIGURE 14. Raw cost values obtained in the learning process (left). Best current solution cost values obtained in the learning
process (right).

and that it is very sensitive to small motion changes, which
makes the task practically very difficult to perform with an
absolute zero cost.

H. EVALUATION ON THE REAL ROBOT
Compared to the peg-in-hole task, the sweeping task is
influenced by the environment to a higher degree. The
result depends on the friction forces between the robot
sweeping plate and the box, and between the box and the
surface. This indicates a possible mismatch between the sim-
ulation environment and the real environment of the
robot. However, in this case, the learned trajectory per-
forms the task in the same way as in the simulation
setup (Fig. 19.).

V. DISCUSSION AND FUTURE WORK
In the previous section we obtained results of learning for
two robotic tasks. Because of the high sensitivity to parameter
changes, it was not possible to obtain the classical raw-cost
convergence of these tasks in any of the two cases despite
the occurrence of qualitatively satisfying solutions in the
search (learning) process. Therefore, we proposed the Cbest
and the Cmean evaluation metrics which enable a comparison
of such stochastic cost/reward functions.

In the field of robotics, stochastic tasks are very chal-
lenging to learn. While modern model-based RL approaches
are very data efficient [30], [31], [32], [33] for learn-
ing various robotic tasks, it still remains very difficult to
learn a model for highly stochastic tasks. Despite their data

72002 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 15. Demonstrations for the sweeping task and classified attractor points for the initial box position and the target.

FIGURE 16. Trajectory initialized by using the attractor frames classified from the demonstration as via-points and the best
trajectory (left). The best learned trajectory with respect to the initial box position and the target position (right).

inefficiency in terms of the number of rollouts required to
learn a task, black-box policy search approaches are much

simpler to implement and can cope with very stochastic
learning environments. They are, therefore, used in many

VOLUME 8, 2020 72003



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 17. Raw cost values obtained in the learning process (left). Best current solution cost values obtained in the learning
process (right).

FIGURE 18. Comparison of the mean cost values for every iteration
obtained during the learning process with linear initialization and that
with initialization performed with classified attractor frames as
via-points.

examples [34], [20], [35], [36]. Also, black-box policy search
approaches do not require complex cost/reward functions,
but can operate with sparse evaluation, which also greatly
simplifies the learning setup and applicability. We show that
the use of LfD can contribute to a much more efficient use
of learning data when using a black-box stochastic optimizer
like the CMA-ES algorithm for policy search. We initialized
the algorithm using two strategies, the first one involving an
LfD method and the second one without it. Results obtained
from the two-task test scenarios show that initial trajecto-
ries that already encode some information are crucial to
efficient learning of a task in robotics using the BB policy
search.

Learning algorithms usually have some open parameters
which need to be set manually. For the CMA-ES algorithm,
this is the initial step size which can be also considered as an

exploration rate. In order to make the policy search efficient,
the exploration rate for policy search algorithms needs to be
set according to the quality of the initial solution; if the initial
trajectory is far from the final trajectory, higher exploration
rates have to be set, and vice-versa. Too high exploration rates
can lead to very slow convergence, while too low rates involve
the risk of never converging at the right solution. In this
research, the initialization of the policy search algorithm
with trajectories obtained from the LfD step, proved to allow
setting lower exploration rates without impairing the quality
of the final solution.

Even though the presented approach was tested on two
tasks, it is scalable to other robotic tasks; however, two con-
straints are imposed. The constraint of the LfD approach is
that the tasks need to be demonstrated on the trajectory level
with respect to objects of known poses in order to extract
additional relevant via-points. The constraint of the policy
search step is that it needs a reward function. However, it can
be simply constructed for most tasks as it is a sparse cost
function which evaluates only the end-result of the robot
behavior. In terms of learning environments, we performed
kinesthetic teaching on a real robot while performing the pol-
icy search task optimization step in simulation. To evaluate
the final learned trajectory, the real robot is used. This setup
exploited all the benefits of simulating robot learning with
respect to the real-world learning, such as accelerated real-
time clock for faster interactions (which shortens the learning
time drastically) and no environment safety concerns which
pose a big problem in the real-world robot learning. We have
showed that this is a valid learning setup for the tasks that are
not heavily influenced by environmental conditions. For tasks
that are heavily influenced by the environment dynamics,
the mismatch between the simulation and the real world
would be, predictably, more emphasized.

Future work will be focused on finding more efficient
algorithms for policy search with sparse evaluation. The other

72004 VOLUME 8, 2020



J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

FIGURE 19. Sequence of motions for the sweeping task performed by the UR5 robot. The target position of the
task is marked on the horizontal surface in red.

direction will be the automatic estimation of exploration rates
at the beginning of the learning process and their potential
online tuning, as shown in [37]. Also, the automatic extraction
of end-result-oriented cost/reward functions will be a topic of
interest.

VI. CONCLUSION
In this paper, we propose a methodology for performing
task-oriented learning for continuous motion tasks. Learning
from demonstration based on the classification of coordinate
frames is used in order to initialize a task-oriented black-box
policy search algorithm. The evolutionary CMA-ES algo-
rithm is used in order to perform the task optimization, using
DMPs as a policy representation. A simulation setup for task
optimization is also presented.

We tested the approach in two robotic test scenarios: a peg-
in-hole task and a sweeping task. Two initialization strategies
were compared in terms of the learning speed and the current
mean cost. It is shown that by initializing the policy search
with LfD, we are able to accelerate the learning process
with respect to the initialization strategy with no knowledge
obtained from demonstrations.

REFERENCES
[1] S. Calinon, ‘‘A tutorial on task-parameterized movement learning and

retrieval,’’ Intell. Service Robot., vol. 9, no. 1, pp. 1–29, Jan. 2016, doi:
10.1007/s11370-015-0187-9.

[2] A. Pervez and D. Lee, ‘‘Learning task-parameterized dynamic movement
primitives using mixture of GMMs,’’ Intell. Service Robot., vol. 11, no. 1,
pp. 61–78, Jan. 2018, doi: 10.1007/s11370-017-0235-8.

[3] A. L. P. Ureche, K. Umezawa, Y. Nakamura, and A. Billard, ‘‘Task param-
eterization using continuous constraints extracted from human demonstra-
tions,’’ IEEE Trans. Robot., vol. 31, no. 6, pp. 1458–1471, Dec. 2015, doi:
10.1109/TRO.2015.2495003.

[4] A. Rai, G. Sutanto, S. Schaal, and F. Meier, ‘‘Learning feedback terms for
reactive planning and control,’’ in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), May 2017, pp. 2184–2191, doi: 10.1109/ICRA.2017.7989252.

[5] A. Gams, M. Denisa, and A. Ude, ‘‘Learning of parametric coupling
terms for robot-environment interaction,’’ in Proc. IEEE-RAS 15th Int.
Conf. Humanoid Robots (Humanoids), Seoul, South Korea, Nov. 2015,
pp. 304–309, doi: 10.1109/HUMANOIDS.2015.7363559.

[6] T. Alizadeh,M.Malekzadeh, and S. Barzegari, ‘‘Learning from demonstra-
tion with partially observable task parameters using dynamic movement
primitives and Gaussian process regression,’’ in Proc. IEEE Int. Conf. Adv.
Intell. Mechatronics (AIM), Banff, AB, Canada, Jul. 2016, pp. 889–894,
doi: 10.1109/AIM.2016.7576881.

[7] A. M. E. Ghalamzan, C. Paxton, G. D. Hager, and L. Bascetta, ‘‘An incre-
mental approach to learning generalizable robot tasks from human demon-
stration,’’ in Proc. IEEE Int. Conf. Robot. Automat. (ICRA), Seattle, WA,
USA, May 2015, pp. 5616–5621, doi: 10.1109/ICRA.2015.7139985.

[8] M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and B. Boots,
‘‘Skill generalization via inference-based planning,’’ in Proc. RSS Work-
shop Math. Models, Algorithms, Hum. Robot Interact., 2017, pp. 1–3.

[9] M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and B. Boots,
‘‘Towards robust skill generalization: Unifying learning from demonstra-
tion and motion planning,’’ in Proc. 1st Annu. Conf. Robot Learn. (PMLR),
vol. 78, 2017, pp. 109–118.

[10] D. A. Duque, F. A. Prieto, and J. G. Hoyos, ‘‘Trajectory generation for
robotic assembly operations using learning by demonstration,’’ Robot.
Comput.-Integr. Manuf., vol. 57, pp. 292–302, Jun. 2019, doi: 10.1016/
j.rcim.2018.12.007.

[11] N. Figueroa, A. L. P. Ureche, and A. Billard, ‘‘Learning complex sequen-
tial tasks from demonstration: A pizza dough rolling case study,’’ in
Proc. 11th ACM/IEEE Int. Conf. Hum.-Robot Interact. (HRI), Mar. 2016,
pp. 611–612.

[12] S. Levine, C. Finn, T. Darrell, and P. Abbeel, ‘‘End-to-end training of deep
visuomotor policies,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373,
2016.

[13] R. Rahmatizadeh, P. Abolghasemi, L. Boloni, and S. Levine, ‘‘Vision-
based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,’’ in Proc. IEEE Int. Conf. Robot. Automat.
(ICRA), Brisbane, QLD, Australia, May 2018, pp. 3758–3765, doi:
10.1109/ICRA.2018.8461076.

[14] M. Švaco, B. Jerbić, M. Polančec, and F. Šuligoj, ‘‘A reinforcement
learning based algorithm for robot action planning,’’ in Proc. 27th Int.
Conf. Robot. Alpe-Adria-Danube Region (RAAD), Patras, Greece. Berlin,
Germany: Springer, 2018, pp. 493–503.

[15] M. P. Deisenroth, ‘‘A survey on policy search for robotics,’’ Found. Trends
Robot., vol. 2, nos. 1–2, pp. 1–142, 2011, doi: 10.1561/2300000021.

[16] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,’’ Mach. Learn., vol. 8, pp. 229–256,
May 1992.

VOLUME 8, 2020 72005

http://dx.doi.org/10.1007/s11370-015-0187-9
http://dx.doi.org/10.1007/s11370-017-0235-8
http://dx.doi.org/10.1109/TRO.2015.2495003
http://dx.doi.org/10.1109/ICRA.2017.7989252
http://dx.doi.org/10.1109/HUMANOIDS.2015.7363559
http://dx.doi.org/10.1109/AIM.2016.7576881
http://dx.doi.org/10.1109/ICRA.2015.7139985
http://dx.doi.org/10.1016/j.rcim.2018.12.007
http://dx.doi.org/10.1016/j.rcim.2018.12.007
http://dx.doi.org/10.1109/ICRA.2018.8461076
http://dx.doi.org/10.1561/2300000021


J. Vidaković et al.: Accelerating Robot Trajectory Learning for Stochastic Tasks

[17] E. Theodorou, J. Buchli, and S. Schaal, ‘‘Learning policy improve-
ments with path integrals,’’ J. Mach. Learn. Res., vol. 9, pp. 828–835,
Jan. 2010.

[18] J. Kober and J. Peters, ‘‘Policy search for motor primitives in
robotics,’’ Mach. Learn., vol. 84, nos. 1–2, pp. 171–203, Jul. 2011, doi:
10.1007/s10994-010-5223-6.

[19] F. Stulp and O. Sigaud, ‘‘Policy improvement methods: Between black-
box optimization and episodic reinforcement learning,’’ J. Franco-
phones Planification, Décision, Apprentissage Pour la Conduite Syst.,
pp. 1–15, Jul. 2013.

[20] A. Fabisch, ‘‘A comparison of policy search in joint space and Cartesian
space for refinement of skills,’’ in Proc. Int. Conf. Robot. Alpe-Adria
Danube Region, vol. 980, 2020, pp. 301–309, doi: 10.1007/978-3-030-
19648-6_35.

[21] P. Kormushev, S. Calinon, and D. G. Caldwell, ‘‘Robot motor skill coor-
dination with EM-based reinforcement learning,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., Oct. 2010, pp. 3232–3237.

[22] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in robotics:
A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274, Sep. 2013,
doi: 10.1177/0278364913495721.

[23] K. Mülling, J. Kober, O. Kroemer, and J. Peters, ‘‘Learning to select and
generalize striking movements in robot table tennis,’’ Int. J. Robot. Res.,
vol. 32, no. 3, pp. 263–279, Mar. 2013, doi: 10.1177/0278364912472380.

[24] P. Kormushev, S. Calinon, and D. G. Caldwell, ‘‘Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,’’ Adv. Robot., vol. 25, no. 5, pp. 581–603, Jan. 2011, doi:
10.1163/016918611X558261.

[25] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, ‘‘Reinforcement learn-
ing to adjust parametrized motor primitives to new situations,’’ Auton.
Robots, vol. 33, no. 4, pp. 361–379, Nov. 2012, doi: 10.1007/s10514-012-
9290-3.

[26] J. Vidaković, B. Jerbić, B. Šekoranja, M. Švaco, and F. Šuligoj, ‘‘Learn-
ing from demonstration based on a classification of task parameters and
trajectory optimization,’’ J. Intell. Robot. Syst., pp. 1–15, Dec. 2019, doi:
10.1007/s10846-019-01101-2.

[27] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
‘‘Dynamical movement primitives: Learning attractor models for motor
behaviors,’’ Neural Comput., vol. 25, no. 2, pp. 328–373, Feb. 2013, doi:
10.1162/NECO_a_00393.

[28] S. Calinon, I. Sardellitti, and D. G. Caldwell, ‘‘Learning-based control
strategy for safe human-robot interaction exploiting task and robot redun-
dancies,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2010,
pp. 249–254.

[29] N. Hansen and A. Ostermeier, ‘‘Completely derandomized self-adaptation
in evolution strategies,’’ Evol. Comput., vol. 9, no. 2, pp. 159–195,
Jun. 2001, doi: 10.1162/106365601750190398.

[30] A. F. de Broissia and O. Sigaud, ‘‘Actor-critic versus direct policy search:
A comparison based on sample complexity,’’ Proc. Journees Francaises
Planification Decis. Apprentissage, pp. 1–9, Aug. 2016.

[31] M. Zhang, S. Vikram, L. Smith, P. Abbeel, M. J. Johnson, and
S. Levine, ‘‘SOLAR: Deep structured representations for model-based
reinforcement learning,’’ 2018, arXiv:1808.09105. [Online]. Available:
http://arxiv.org/abs/1808.09105

[32] O. Sigaud and F. Stulp, ‘‘Policy search in continuous action
domains: An overview,’’ Neural Netw. J., vol. 113, pp. 28–40,
May 2019.

[33] M. P. Deisenroth and C. E. Rasmussen, ‘‘PILCO: Amodel-based and data-
efficient approach to policy search,’’ in Proc. 28th Int. Conf. Mach. Learn.
(ICML), 2011, pp. 465–472.

[34] X. Li, Z. Liang, and H. Feng, ‘‘Kicking motion planning of nao
robots based on CMA-ES,’’ in Proc. 27th Chin. Control Decis. Conf.
(CCDC), Qingdao, China, May 2015, pp. 6158–6161, doi: 10.1109/
CCDC.2015.7161918.

[35] F. Stulp and O. Sigaud, ‘‘Robot skill learning: From reinforcement learning
to evolution strategies,’’ J. Paladyn Behav. Robot., vol. 4, no. 1, Jan. 2013,
doi: 10.2478/pjbr-2013-0003.

[36] A. Abdolmaleki, B. Price, N. Lau, L. P. Reis, and G. Neumann, ‘‘Deriving
and improving CMA-ES with information geometric trust regions,’’ in
Proc. Genet. Evol. Comput. Conf. (GECCO), Berlin, Germany, 2017,
pp. 657–664, doi: 10.1145/3071178.3071252.

[37] S. Li, C.-M. Chew, and V. Subramaniam, ‘‘Smooth and efficient policy
exploration for robot trajectory learning,’’ in Proc. 27th IEEE Int. Symp.
Robot Hum. Interact. Commun. (RO-MAN), Nanjing, China, Aug. 2018,
pp. 1087–1092, doi: 10.1109/ROMAN.2018.8525631.

JOSIP VIDAKOVIĆ received the Diploma degree
in mechanical engineering from the Faculty of
Mechanical Engineering and Naval Architecture,
University of Zagreb (UNIZAG), in 2014, where
he is currently pursuing the Ph.D. degree. He is
currently a Research Assistant with the Faculty of
Mechanical Engineering and Naval Architecture,
UNIZAG. His current research interests include
the fields of industrial and surgical robotics, arti-
ficial intelligence methods in robotics, and motion

planning and learning from demonstration.

BOJAN JERBIĆ received the B.Sc., M.Sc., and
Ph.D. degrees from the Faculty of Mechanical
Engineering and Naval Architecture, University
of Zagreb, in 1983, 1987, and 1993, respectively.
He is currently a Full Professor and the Head of
the Chair of Manufacturing and Assembly Sys-
tem Planning. He is a member of the Scientific
Board for TechnologyDevelopment with the Croa-
tian Academy of Sciences and Arts, the Croatian
Robotics Society, and the Department of Systems

and Cybernetics, Croatian Academy of Engineering. His main research inter-
ests include cognitive robotics, artificial intelligence, multiagent systems,
new robotic applications, and medical robotics.

BOJAN ŠEKORANJA received the Diploma and
Ph.D. degrees in mechanical engineering from
the Faculty of Mechanical Engineering and Naval
Architecture, University of Zagreb (UNIZAG),
in 2009 and 2015, respectively. He is currently
a Postdoctoral Researcher and Teaching Assis-
tant with the Faculty of Mechanical Engineering
and Naval Architecture, UNIZAG. His current
research interests include industrial and surgical
robotics, and human–robot interaction.

MARKO ŠVACO received the B.Sc. degree in
mechanical engineering, the M.Sc. degree in
computer-aided engineering with a specialization
in intelligent assembly systems, and the Ph.D.
degree in robotics and automation from the Faculty
of Mechanical Engineering and Naval Architec-
ture, University of Zagreb (UNIZAG), Croatia,
in 2008, 2009, and 2015, respectively. Since 2012,
he has been an Associate with the Department
of Neurosurgery, University Hospital Dubrava,

Zagreb, Croatia. He is currently an assistant professor at the Faculty of
Mechanical Engineering and Naval Architecture, UNIZAG. His current
research interests include the fields of industrial and medical robotics,
artificial intelligence methods in robotics, and computer vision.

FILIP ŠULIGOJ received the B.Sc. and M.Sc.
degrees in mechanical engineering and the Ph.D.
degree in robotics and automation from the Faculty
of Mechanical Engineering and Naval Architec-
ture, University of Zagreb (UNIZAG), in 2008,
2009, and 2018, respectively. He currently works
as a Postdoctoral Researcher and a Senior Teach-
ing Assistant with the Faculty ofMechanical Engi-
neering and Naval Architecture, UNIZAG. His
current research activities are focused on the devel-

opment of imaging methods and the control of multiagent robot systems with
applications in surgical procedures. His research interests include the fields
of industrial and medical robotics, machine vision, and artificial intelligence
methods.

72006 VOLUME 8, 2020

http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1007/978-3-030-19648-6_35
http://dx.doi.org/10.1007/978-3-030-19648-6_35
http://dx.doi.org/10.1177/0278364913495721
http://dx.doi.org/10.1177/0278364912472380
http://dx.doi.org/10.1163/016918611X558261
http://dx.doi.org/10.1007/s10514-012-9290-3
http://dx.doi.org/10.1007/s10514-012-9290-3
http://dx.doi.org/10.1007/s10846-019-01101-2
http://dx.doi.org/10.1162/NECO_a_00393
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1109/CCDC.2015.7161918
http://dx.doi.org/10.1109/CCDC.2015.7161918
http://dx.doi.org/10.2478/pjbr-2013-0003
http://dx.doi.org/10.1145/3071178.3071252
http://dx.doi.org/10.1109/ROMAN.2018.8525631

