Kalibracija i lokalizacija mobilnog robota s četiri nezavisno zakretna i četiri nezavisno pogonjena kotača

Vitko, Jakov

Master's thesis / Diplomski rad

2024

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:221510

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-06-29

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Jakov Vitko

Zagreb, 2024.

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

DIPLOMSKI RAD

Mentori:

Doc. dr. sc. Marko Švaco, mag. ing. mech.

Student:

Jakov Vitko

Zagreb, 2024.

Izjavljujem da sam ovaj rad izradio samostalno koristeći znanja stečena tijekom studija i navedenu literaturu.

Zahvaljujem se mentoru doc. dr. sc. Marku Švaci, mag.ing. mech. na ukazanom povjerenju i pomoći tijekom izrade rada. Zahvaljujem se asistentu Branimiru Ćaranu, mag. ing. mech. koji je odgovarao na sve moje upite i bez kojeg ovaj rad ne bi bio ostvariv. Također se želim zahvaliti svim ostalim profesorima fakulteta koji su mi prenijeli potrebna znanja i vještine za savladavanje ove tematike. Na kraju, zahvaljujem se svojoj obitelji i prijateljima na bezuvjetnoj podršci tijekom cijelog studiranja.

Jakov Vitko

SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE

Središnje povjerenstvo za završne i diplomske ispite
 Povjerenstvo za diplomske ispite studija strojarstva za smjerove:
 Proizvodno inženjerstvo, inženjerstvo materijala, industrijsko inženjerstvo i menadžment, mehatronika i robotika, autonomni sustavi i računalna inteligencija

 Sveučilište u Zagrebu

 Fakultet strojarstva i brodogradnje

 Datum
 Prilog

 Klasa: 602 - 04 / 24 - 06 / 1
 Ur.broj: 15 - 24

DIPLOMSKI ZADATAK

Student:	Jakov Vitko	JMBAG:	0035217782	
Naslov rada na hrvatskom jeziku:	Kalibracija i lokalizacija mobilnog robota s četiri nezavisno pogonjena kotača	s četiri neza	visno zakretna i	Í

Naslov rada naCalibration and localization of a mobile robot with four independentengleskom jeziku:steering and four independent driving wheels

Opis zadatka:

Mobilni roboti s četiri nezavisno zakretna i četiri nezavisno pogonjena kotača omogućuju gibanje u svim smjerovima x i y ravnine te zauzimanje bilo koje orijentacije. Zbog svoje fleksibilnosti ovakva kinematička struktura postaje, osim u robotici, sve češća u automobilskoj industriji.

Kinematički model ovakvog mobilnog robota je nelinearan i ovisan o značajnom broju parametara (udaljenost svakog od kotača od središta robota, promjer kotača i kutu postavljanja zakretnih motora) te je stoga estimacija pozicije i orijentacije robota primjenom odometrije nesigurna i netočna kroz vrijeme. S obzirom na sve navedeno, u sklopu diplomskog rada potrebno je:

- Pretražiti postojeće metode za kalibraciju mobilnih robota s četiri kotača,
- Snimiti slijeđenje putanja mobilnog robota primjenom odometrije robota, kamere, inercijalne mjeme jedinice i vanjskog mjernog uređaja OptiTrack,
- Primjenom optimizacijskih metoda estimirati nove kinematičke parametre odometrije mobilnog robota te verificirati dobivene parametre,
- Fuzijom odometrije robota, mjerenja s inercijalne mjerne jedinice i kamere potrebno je estimirati poziciju i orijentaciju robota,
- Verificirati sve rezultate primjenom OptiTrack sustava.

U radu je potrebno navesti korištenu literaturu i eventualno dobivenu pomoć.

Zadatak zadan:

Datum predaje rada:

Predviđeni datumi obrane:

7. ožujka 2024.

svibnja 2024.

13. - 17. svibnja 2024.

Predsjednik Povjerenstva: Prof. dr. se. Ivica Garašić

Zadatak zadao: A. Doc. dr. sc. Marko Švaco

SADRŽAJ

SADRŽAJ	I		
POPIS SLIKAII			
POPIS TABLICA	V		
POPIS OZNAKA	VIII		
POPIS KRATICA	X		
SAŽETAK	.XI		
SUMMARY	XII		
1. UVOD	1		
2. PREGLED STRUKTURA MOBILNIH ROBOTA I KORIŠTENIH METODA	2		
ALIBRACIJE ODOMETRIJE 2.1 Osnovno straltava mohilaih nehoto i motoda kolihmoiia odomotnija	3		
2.1. Osnovne strukture mobilnih robota i metode kalibracije odometrije 2.2. Mobilni robot s četiri nezavisno zakretna i nezavisno pogonjena kotača	8		
3. KALIBRACIJA ODOMETRIJE MOBILNOG ROBOTA ZADANE STRUKTURE	. 12		
3.1. Mobilni robot korišten u praktičnom dijelu rada	12		
3.2. Odabrane trajektorije	. 16		
3.3. Optimiranje parametara direktne kinematike robota	23		
3.3.1. Estimacija pozicije i orijentacije robota	23		
3.3.2. Minimizacija sume kvadrata pogresaka varijabli stanja i koristene metode	24		
3.3.2.2 Fmincon metoda	. 25		
3.3.2.3. Genetski algoritam			
3.3.2.4. Particle Swarm algoritam	28		
3.3.3. Rezultati kalibracije parametara direktne kinematike	. 29		
3.3.3.1. Nominalna ocjena točnosti lokalizacije	30		
3.3.3.2. Ocjena metode Fmincon	37		
3.3.3.3. Ocjena metode Levenberg – Marquardt			
3.3.5. Ocjena algoritma Particle Swarm	. 50		
3.3.3.6. Usporedba metoda	. 63		
4 PRIMIENA PROŠIRENOG KALMANOVOG FILTRA	76		
4 1 Prošireni Kalmanov filtar	76		
4.2. Dodatni senzori	77		
4.3. Primjena i rezultati	80		
4.3.1. Rezultati fuzije s inicijalnim parametrima	. 80		
4.3.2. Rezultati fuzije s parametrima Particle Swarm optimizacije	. 86		
4.3.3. Rezultati fuzije s parametrima optimizacije genetskim algoritmom	92		
4.3.4. Usporedba rezultata primjene Kalmanovog filtra	98		
5. ZAKLJUCAK	112		
LITERATURA	113		
PRILOZI			
Fakultet strojarstva i brodogradnjeI			

Jakov Vitko

POPIS SLIKA

Slika 1.	Diferencijalna struktura s dva kotača [4]	3
Slika 2.	UMB mark putanja za kalibraciju diferencijalnog robota [2]	4
Slika 3.	Mobilni robot Ackermanove strukture [8]	5
Slika 4.	Usporedba estimacije robota [8]	5
Slika 5.	Trajektorija za kalibraciju mobilnog robota automobilske strukture [8]	6
Slika 6.	Svesmjerni robot s 3 kotača	7
Slika 7.	Predložene trajektorije za kalibraciju svesmjernih robota [19]	7
Slika 8.	Shematski prikaz 4WIS4WID robota [1]	8
Slika 9.	Kinematska struktura 4WIS4WID robota [1]	9
Slika 10.	Prikaz sila adhezijskog sustava [24]	12
Slika 11.	Penjanje robota vertikalno po zidu	13
Slika 12.	Dijelovi korištenog robotskog sustava [25]	14
Slika 13.	Kaskadni sustav regulacije [1]	14
Slika 14.	Prvih pet kamera OptiTrack sustava za praćenje pokreta	15
Slika 15.	Preostale tri kamere OptiTrack sustava za praćenje pokreta	15
Slika 16	Robot s označenim koordinatnim sustavom i postavljenih šest markera za praćej	nie
Slika 10.	Robot 5 označenim koordinatimi sastavom i postavijenim sest markera za pračen	16
Slika 17	Prikaz robota u programu Motive	16
Slika 18	Referentne trajektorije – linearna gibanja	17
Slika 10.	Referentna linearna trajektorija u smjeru osi v	17
Slika 17.	Linearno vođenje robota u smjeru osi v	18
Slika 20.	Referentra linearna trajektorija u smjeru osi v	18
Slike 22.	Lingerno vođenja robeta u smjeru osi v	10
Slika 22 .	Deferente a trajeletorije - lenižne cihenie	19
Slika 23 .	Referentine trajektorije – Klužila globilja	19 20
Slika 24 .	Referentina kruzila trajektorija u smjeru suprotnog od kazaljke na satu	20
SIIKa 23 .	Ve đenio na bote na lumičnici u suprotucu zmieru od bozalile na satu	20
Slika 20 .	Performante a tenislatoriis entropiis alte esi	21
SIIKa $2/$.	Referenting trajectorije – rotacije oko osi	21 tu
SIIKa 20.	Referentina trajektorija – rotacija oko z osi u sinjeru suprotnog od kazaljke na sa	111 22
Slite 20	Defenenta tanielitoria atropia alto z ogi y amieny lazzelila no goty	22
Slika 29 .	Referentina trajektorija – rotacija oko z osi u smjeru kazaljke na satu	22
Slika 30 .	Kolacija rodola oko z osi	23
S11Ka 31.	Uspjesnost genetskih algoritama [51]	2/
SI1Ka 32.	Pseudo kod koristenog genetskog algoritma	28
Slika 33.	Oznake parametara svakog kotaca	30
Slika 34.	Rezultati linearnog gibanja u smjeru osi x s inicijalnim parametrima	31
Slika 35.	Rezultati linearnog gibanja u smjeru osi y s inicijalnim parametrima	32
Slika 36.	Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s inicijalni	im
G1'1 27	parametrima	33
Slika $3/$.	Rezultati gibanja po kruznici u smjeru kazaljke na satu s inicijalnim parametrin	1a 24
Slika 38	Rezultati rotacije oko z osi u suprotnom smjeru od kazalike na satu s inicijalnin	54 n
Slika Jo.	narametrima	.1 25
Slika 20	Rezultati rotacije oko z osi u smjeru kazalike na satu s inicijalnim parametrima	36
Slika J9.	Rezultati linearnog gibania u smjeru osi v s parametrima Eminoon ontimizacija	37
Slike 11	Rezultati linearnog gibania u smjeru osi v s parametrima Emineon optimizacije	30
Slike 41 .	Rezultati gibania no kružnici u suprotnom smjoru od kazalika na setu s	50
JIIKa 42.	neromotrimo Eminoon ontimizooijo	20
	parameunna runneon opunnzaeije	57

Jakov Vitko	Diplomski rad
Slika 43.	Rezultati gibanja po kružnici u smjeru kazaljke na satu s parametrima Fmincon
	optimizacije
Slika 44.	Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s parametrima
	Fmincon optimizacije
Slika 45.	Rezultati rotacije oko z osi u smjeru kazaljke na satu s parametrima Fmincon
	optimizacije
Slika 46.	Rezultati linearnog gibanja u smjeru osi x s parametrima Levenberg – Marquardt
	optimizacije
Slika 47.	Rezultati linearnog gibanja u smjeru osi v s parametrima Levenberg – Marquardt
	optimizacije
Slika 48.	Rezultati gibania po kružnici u suprotnom smjeru od kazalike na satu s
	parametrima Levenberg – Marquardt optimizacije
Slika 49.	Rezultati gibania po kružnici u smieru kazalike na satu s parametrima Levenberg
-	– Marquardt optimizacije
Slika 50.	Rezultati rotacije oko z osi u suprotnom smjeru od kazalike na satu s parametrima
	Levenberg – Marguardt optimizacije
Slika 51.	Rezultati rotacije oko z osi u smjeru kazalike na satu s parametrima Levenberg –
	Marquardt optimizacije
Slika 52.	Rezultati linearnog gibania u smjeru x osi s parametrima optimizacije genetskim
	algoritmom 50
Slika 53.	Rezultati linearnog gibania u smjeru v osi s parametrima optimizacije genetskim
Since 221	algoritmom 51
Slika 54.	Rezultati gibania po kružnici u suprotnom smjeru od kazalike na satu s
Since e n	narametrima ontimizacije genetskim algoritmom
Slika 55	Rezultati gibania no kružnici u smjeru kazalike na satu s parametrima
Since 22.	ontimizacije genetskim algoritmom
Slika 56	Rezultati rotacije oko z osi u suprotnom smjeru od kazalike na satu s parametrima
Sinka 20.	optimizacije genetskim algoritmom
Slika 57	Rezultati rotacije oko z osi u smjeru kazalike na satu s parametrima optimizacije
Sinka 57.	genetskim algoritmom 55
Slika 58	Rezultati linearnog gibania u smjeru osi x s parametrima Particle Swarm
Since 20.	ontimizacije 57
Slika 59	Rezultati linearnog gibania u smieru osi v s parametrima Particle Swarm
Siika 57.	ontimizacije 58
Slika 60	Rezultati gibania no kružnici u suprotnom smjeru od kazalike na satu s
Since 001	narametrima Particle Swarm ontimizacije
Slika 61	Rezultati gibania no kružnici u smjeru kazalike na satu s parametrima Particle
Since 01.	Swarm ontimizacije 60
Slika 62	Rezultati rotacije oko z osi u suprotnom smjeru od kazalike na satu s parametrima
511Ku 02.	Particle Swarm ontimizacije 61
Slika 63	Rezultati rotacije oko z osi u smjeru kazalike na satu s parametrima Particle
Since 05.	Swarm ontimizacije 62
Slika 64	Usporedba rezultata kalibracije za linearno gibanje u smjeru osi x 63
Slika 65	Usporedba rezultata kalibracije za linearno gibanje u smjeru osi v 65
Slika 66	Usporedba rezultata kalibracije za gibanje no kružnici u suprotnom smjeru od
~11100 000	kazalike na satu
Slika 67	Usporedba rezultata kalibracije za gibanje no kružnici u smjeru kazalike na satu 69
Slika 68	Usporedba rezultata kalibracije za rotaciju oko z osi u suprotnom smieru od
~1110 001	kazalike na satu
Slika 69	Usporedba rezultata kalibracije za rotaciju oko z osi u smjeru kazalike na satu 73
	-r

Jakov Vitko Diplomski rad Slika 70. Slika 71. Slika 72. Slika 73. Adafruit MPU6050 IMU senzor [41].....79 Slika 74. Slika 75. Slika 76. Rezultati fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi x 80 Rezultati fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi y 81 Slika 77. Rezultati fuzije s inicijalnim parametrima za gibanje po kružnici u suprotnom Slika 78. Rezultati fuzije s inicijalnim parametrima za gibanje po kružnici u smjeru Slika 79. Rezultati fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom Slika 80. Slika 81. Rezultati fuzije s inicijalnim parametrima za rotaciju oko z osi u smjeru kazaljke Rezultati fuzije s parametrima Particle Swarm optimizacije za linearno gibanje u Slika 82. Slika 83. Rezultati fuzije s parametrima Particle Swarm optimizacije za linearno gibanje u Rezultati fuzije s parametrima Particle Swarm optimizacije za gibanje po kružnici Slika 84. Rezultati fuzije s parametrima Particle Swarm optimizacije za gibanje po kružnici Slika 85. Slika 86. Rezultati fuzije s parametrima Particle Swarm optimizacije za rotaciju oko z osi u Rezultati fuzije s parametrima Particle Swarm optimizacije za rotaciju oko z osi u Slika 87. Slika 88. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za linearno Rezultati fuzije s parametrima optimizacije genetskim algoritmom za linearno Slika 89. Slika 90. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za gibanje po Slika 91. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za gibanje po Rezultati fuzije s parametrima optimizacije genetskim algoritmom za rotaciju oko Slika 92. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za rotaciju oko Slika 93. Slika 94. Usporedba rezultata fuzije za linearno gibanje u smjeru osi y 101 Slika 95. Usporedba rezultata fuzije za gibanje po kružnici u suprotnom smjeru od kazaljke Slika 96. Usporedba rezultata fuzije za gibanje po kružnici u smjeru kazaljke na satu..... 105 Slika 97. Usporedba rezultata fuzije za rotaciju oko z osi u suprotnom smjeru od kazaljke na Slika 98. Usporedba rezultata fuzije za rotaciju oko z osi u smjeru kazaljke na satu...... 109 Slika 99.

POPIS TABLICA

Tablica	1.	Inicijalni parametri robota	30
Tablica	2.	Greške rezultata linearnog gibanja u smjeru osi x s incijalnim parametrima	31
Tablica	3.	Greške rezultata linearnog gibanja u smjeru osi y s incijalnim parametrima	32
Tablica	4.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s	
		incijalnim parametrima	33
Tablica	5.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s inicijalnim	
		parametrima	34
Tablica	6.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s	
		inicijalnim parametrima	35
Tablica	7.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s inicijalnim	
		parametrima	36
Tablica	8.	Parametri dobiveni Fmincon optimizacijom	37
Tablica	9.	Greške rezultata linearnog gibanja u smjeru osi x s parametrima Fmincon	
		optimizacije	38
Tablica	10.	Greške rezultata linearnog gibanje u smjeru osi x s parametrima Fmincon	
		optimizacije	39
Tablica	11.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s	
		parametrima Fmincon optimizacije	40
Tablica	12.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima	
		Fmincon optimizacije	41
Tablica	13.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s	
		parametrima Fmincon optimizacije	42
Tablica	14.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima	
		Fmincon optimizacije	43
Tablica	15.	Parametri dobiveni Levenberg – Marquardt optimizacijom	43
Tablica	16.	Greške rezultata linearnog gibanja u smjeru osi x s parametrima Levenberg –	
		Marquardt optimizacije	44
Tablica	17.	Greške rezultata linearnog gibanja u smjeru osi y s parametrima Levenberg –	
		Marquardt optimizacije	45
Tablica	18.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s	
		parametrima Levenberg – Marquardt optimizacije	46
Tablica	19.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima	
	• •	Levenberg – Marquardt optimizacije	47
Tablica	20.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s	40
	A 1	parametrima Levenberg – Marquardt optimizacije	48
Tablica	21.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima	
	~ ~	Levenberg – Marquardt optimizacije	49
Tablica	22.	Parametri dobiveni optimizacijom genetskim algoritmom	50
Tablica	23.	Greške rezultata linearnog gibanja u smjeru x osi s parametrima optimizacije	- 1
	~ .	genetskim algoritmom	51
Tablica	24.	Greške rezultata linearnog gibanja u smjeru y osi s parametrima optimizacije	
		genetskim algoritmom	52
Tablica	25.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s	
m 11'	• -	parametrima optimizacije genetskim algoritmom	53
Tablica	26.	Greske rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima	~ .
m 11'	~-	optimizacije genetskim algoritmom	54
Tablica	27.	Greske rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s	
		parametrima optimizacije genetskim algoritmom	55

Tablica 28.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima
	optimizacije genetskim algoritmom
Tablica 29.	Parametri dobiveni Particle Swarm optimizacijom
Tablica 30.	Greške rezultata linearnog gibanja u smjeru osi x s parametrima Particle Swarm
	optimizacije
Tablica 31.	Greške rezultata linearnog gibanja u smjeru osi y s parametrima Particle Swarm
	optimizacije
Tablica 32.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s
	parametrima Particle Swarm optimizacije
Tablica 33.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima
	Particle Swarm optimizacije
Tablica 34.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s
	parametrima Particle Swarm optimizacije
Tablica 35.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima
	Particle Swarm optimizacije
Tablica 36.	Greške rezultata kalibracije za linearno gibanje u smjeru osi x 64
Tablica 37.	Greške rezultata kalibracije za linearno gibanje u smjeru osi y
Tablica 38.	Greške rezultata kalibracije za gibanje po kružnici u suprotnom smjeru od
	kazaljke na satu
Tablica 39.	Greške rezultata kalibracije za gibanje po kružnici u smjeru kazaljke na satu 70
Tablica 40.	Greške rezultata kalibracije za rotaciju oko z osi u suprotnom smjeru od kazaljke
	na satu72
Tablica 41.	Greške rezultata kalibracije za rotaciju oko z osi u smjeru kazaljke na satu 74
Tablica 42.	Ukupne smanjenje grešaka dobiveno kalibracijom odometrije75
Tablica 43.	Greške rezultata fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi
	x
Tablica 44.	Greške rezultata fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi
	y
Tablica 45.	Greške rezultata fuzije s inicijalnim parametrima za gibanje po kružnici u
	suprotnom smjeru od kazaljke na satu
Tablica 46.	Greške rezultata fuzije s inicijalnim parametrima za gibanje po kružnici u smjeru
	kazalike na satu 84
Tablica 47.	Kuzujke nu sutu
	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u
	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52. Tablica 53.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52. Tablica 53.	Greške rezultata fuzije s parametrima Particle Swarm optimizacije za gibanje po kružnici u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52. Tablica 53. Tablica 53.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52. Tablica 53. Tablica 54.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 48. Tablica 49. Tablica 50. Tablica 51. Tablica 52. Tablica 53. Tablica 54. Tablica 55.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Tablica 56.	Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
	linearno gibanje u smjeru osi y94
Tablica 57.	Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
	gibanje po kružnici u suprotnom smjeru od kazaljke na satu
Tablica 58.	Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
	gibanje po kružnici u smjeru kazaljke na satu96
Tablica 59.	Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
	rotaciju oko z osi u suprotnom smjeru od kazaljke na satu
Tablica 60.	Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
	rotaciju oko z osi u smjeru kazaljke na satu98
Tablica 61.	Greške rezultata fuzije za linearno gibanje u smjeru osi x 100
Tablica 62.	Greške rezultata fuzije za linearno gibanje u smjeru osi y 102
Tablica 63.	Greške rezultata fuzije za gibanje po kružnici u suprotnom smjeru od kazaljke na
	satu
Tablica 64.	Greške rezultata fuzije za gibanje po kružnici u smjeru kazaljke na satu 106
Tablica 65.	Greške rezultata fuzije za rotaciju oko z osi u suprotnom smjeru od kazaljke na
	satu
Tablica 66.	Greške rezultata fuzije za rotaciju oko z osi u smjeru kazaljke na satu 110
Tablica 67.	Ukupno smanjenje pogreške dobiveno primjenom Kalmanovog filtra111

POPIS OZNAKA

Oznaka	Jedinica	Opis
a_i	m	Udaljenost <i>i</i> -tog kotača u smjeru x osi
b_i	m	Udaljenost <i>i</i> -tog kotača u smjeru y osi
$e_{x,max}$	m	Maksimalna apsolutna pogreška x varijable za trenutnu trajektoriju
$e_{x,sr}$	m	Srednja maksimalna apsolutnih pogrešaka trajektorije po <i>x</i> varijabli
$e_{y,max}$	m	Maksimalna apsolutna pogreška y varijable za trenutnu trajektoriju
$e_{y,sr}$	m	Srednja maksimalna apsolutnih pogrešaka trajektorije po y varijabli
$e_{ heta,max}$	rad	Maksimalna apsolutna pogreška trajektorije po θ varijabli
$e_{ heta,sr}$	rad	Srednja vrijednost maksimalnih apsolutnih pogrešaka orijentacije
F	-	Linearizirana matrica dinamike sustava
g^{*}	-	Globalno najbolja pozicija Particle Swarm čestica
Н	-	Linearizirana matrica dinamike izlaza
i	-	Oznaka za redni broj kotača
J	-	Funkcija cilja
J	-	Matrica direktne kinematike
k	-	Oznaka za diskretni korak
Kg	-	Matrica Kalmanovih pojačanja
LB	-	Matrica donjih granica parametara
n	-	Broj ponavljanja trajektorije
Р	-	Matrica prijenosa 1
Pn	-	Matrica kovarijanci sustava
$\widehat{\mathbf{P}}_{n+1}$	-	Estimirana matrica kovarijanci sustava
p_i^*	m	Najbolja prošla pozicija <i>i</i> -te Particle Swarm čestice
Q	-	Matrica šuma procesa
$\mathbf{q}_{\mathbf{d}}$	-	Vektor referentne trajektorije
\mathbf{R}_{n}	-	Matrica nesigurnosti mjerenja
R	-	Vektor Levenberg-Marquardt metode za izračun reziduala
r_i	m	Radijus u <i>i-</i> tog kotača
S	-	Oznaka za redni broj snimanja
t	S	Vrijeme izvršavanja
t_k	S	Vrijeme u <i>k</i> -tom koraku
UB	-	Matrica gornjih granica parametara
v	m/s	Linearna brzina robota
Vc	-	Vektor referentnih orijentacija i kutnih brzina kotača
v_i	m/s	Linearna brzina <i>i-</i> tog kotača

Fakultet strojarstva i brodogradnje

Jakov Vitko		Diplomski i
$v_{i,k}^*$	m/s	Brzina <i>i</i> -te Particle Swarm čestice za <i>k</i> -tom koraku
v_x	m/s	Linearna brzina robota u smjeru x osi
v_{xi}	m/s	Linearna brzina <i>i-</i> tog kotača u smjeru x osi
$v_{x,k}$	m/s	Linearna brzina robota u smjeru x osi u <i>k-</i> tom koraku
v_y	m/s	Linearna brzina robota u smjeru y osi
v_{yi}	m/s	Linearna brzina <i>i-</i> tog kotača u smjeru y osi
$v_{y,k}$	m/s	Linearna brzina robota u smjeru y osi u <i>k-</i> tom koraku
W_i	-	Pomoćna varijabla za izačun kutne brzine
Wi	-	Oznaka za <i>i-</i> ti kotač
X	-	Matrica prijenosa 2
x	m	Pozicija u smjeru x osi
$x_{aps,s,k}$	m	Apsolutna pozicija u smjeru <i>x</i> osi u <i>k-</i> tom koraku i snimanju broj <i>s</i>
x _{est}	m	Pozicija estimirana odometrijom u smjeru x osi u k-tom
$x^*_{i,k}$	m	Trenutna pozicija <i>i</i> -te Particle Swarm čestice za <i>k</i> -tom koraku
\mathbf{x}_{n}	-	Vektor varijabli stanja
$\hat{\mathbf{x}}_{\mathbf{n}}$	-	Estimirani vektor varijabli stanja
x_{wi}^{r}	m	Težište i-tog kotača u robotskog koordinatnom sustavu u smjeru x osi
У	m	Pozicija u smjeru y osi
y_{aps}	m	Apsolutna y pozicija
y_{est}	m	Estimirana y pozicija
\mathbf{y}_n	-	Vektor izlaza sustava
\mathcal{Y}_{wi}^{r}	m	Težište <i>i</i> -tog kotača u robotskog koordinatnom sustavu u smjeru y osi
δ_i	rad	Orijentacija <i>i-</i> tog kotača
θ	rad	Orijentacija robota
$ heta_{est}$	rad	Estimirana orijentacija
λ	-	Langrange-ov multiplikator
σ_x	m	Standardna devijacija pogreške x varijable stanja
σ_y	m	Standardna devijacija pogreške y varijable stanja
$\sigma_{ heta}$	rad	Standardna devijacija pogreške $ heta$ varijable stanja
ω	rad/s	Promjena orijentacije robota u vremenu
ω_i	rad/s	Kutna brzina <i>i</i> -tog kotača
$\omega_{i,k}$	rad/s	Kutna brzina <i>i</i> -tog kotača u <i>k</i> -tom vremenu
ω_k	rad/s	Promjena orijentacije robota u k-tom koraku

Kratica	Opis
4WIS4WID	Četiri nezavisno zakretna i četiri nezavisno pogonjena kotača (engl. "four-wheel-independent steering and four-wheel-independent driving")
CCW	Suprotan smjer od kazaljke na satu (engl. " <i>counter-clock</i> wise")
CW	Smjer kazaljke na satu (engl. "clock wise")
EKF	Prošireni Kalmanov filtar (engl. "extended Kalman filter")
FM	Fmincon metoda
GA	Genetski algoritam
IMU	Inercijalna mjerna jedinica
LM	Levenberg – Marquardt metoda
NOM	Nominalno stanje, nominalni parametri
PS	Particle Swarm algoritam
SLAM	Simultana lokalizacija i mapiranje (engl. "simultaneous localization and mapping")
VPU	Vizijski – procesorska jedinica (engl. "vision processing unit")

Točnost lokalizacije iznimno je važan segment mobilne robotike koji omogućuje upravljanje i navigaciju robota. U ovom radu se promatra struktura s četiri nezavisno zakretna i četiri nezavisno pogonjena kotača (engl. "four-wheel-independent steering and four-wheelindependent driving, 4WIS4WID"). Pozicija i orijentacija robota mogu se estimirati koristeći nelinearni model kinematike koji uključuje udaljenosti kotača od središta robota, te kut zakreta i radijus svakog kotača. Odstupanje radijusa i udaljenosti kotača od nominalnih vrijednosti unose pogrešku estimacije koja kumulativno raste s kretnjom robota. Rad pokazuje postupak kalibracije parametara robota za smanjenje pogreške estimacije i bolje praćenje referentnih trajektorija. Predlaže se šest različitih trajektorija za ocjenu točnosti koje pokazuju utjecaj svih parametara. Za minimizaciju je odabrana funkcija cilja u obliku sume kvadrata pogrešaka između referentnih i stvarnih trajektorija. Stvarna pozicija robota dobivena je vanjskim mjernim sustavom OptiTrack deklarirane točnosti od 0,2 mm. Optimizacija parametara je napravljena s pomoću dvije gradijentne i stohastičke metode. Novo dobiveni parametri su iskorišteni za verifikaciju te je vidljivo poboljšanje od 60 posto. Kako na grešku lokalizacije robota utječe i numerička integracija, isključiva primjena odometrije nije dovoljna za adekvatnu točnost lokalizacije. Fuzija multimodalnih mjerenja s više različitih senzora omogućuje veću točnost i robusnost lokalizacije robota. Primjenom proširenog Kalmanovog filtra fuzirala se odometrija s mjerenjima kamere za praćenje i inercijalne mjerne jedinice. Rezultati prikazani u ovom istraživanju pokazuju kako kalibrirani robot s fuzijom pokazuje značajna poboljšanja u lokalizaciji.

Ključne riječi: lokalizacija mobilnih robota, četiri nezavisno zakretna i pogonjena kotača, odometrija kotača, kalibracija parametara direktne kinematike, prošireni Kalmanov filtar, fuzija mjerenja

Localization accuracy is an extremely important aspect of mobile robotics, enabling robot control and navigation. This thesis examines localization accuracy of mobile robot based on the four-wheel-independent steering and four-wheel-independent driving (4WIS4WID) structure. The position and orientation of the robot can be estimated using a nonlinear kinematic model that includes wheel distances from the robot's center, as well as the steering angle and radius of each wheel. Discrepancies in radius and wheel distances from nominal values introduce estimation errors that cumulatively increase with robot movement. The study presents a robot parameter calibration process to reduce estimation errors and improve tracking of reference trajectories. Six different trajectories are proposed to evaluate accuracy, demonstrating the influence of all parameters. A sum of squared errors between reference and actual trajectories is chosen as the objective function for minimization. The actual robot position is obtained using an external OptiTrack measurement system with a declared accuracy of 0.2 mm. Parameter optimization is performed using two gradient-based and two stochastic methods. The newly obtained parameters are used for verification, resulting in a visible improvement of 60 percent. Since numerical integration also affects robot localization error, relying solely on odometry is insufficient for adequate accuracy. Fusion of multimodal measurements from various sensors allows for greater accuracy and robustness in robot localization. The extended Kalman filter (EKF) is used to fuse wheel odometry with tracking camera and inertial measurement unit (IMU) data. The results presented in this study demonstrate significant improvements in localization with the calibrated robot and sensor fusion.

Key words: four-wheel-independent steering and four-wheel-independent driving, 4WIS4WID, mobile robot localization, wheel odometry, direct kinematics, parameter calibration, extended Kalman filter, EKF, sensor fusion

1. UVOD

Točna lokalizacija mobilnih robota s kotačima ključna je za obavljanje korisnih radnji. Za dobivanje lokalizacije se najčešće koristi odometrija. Odometrijsko estimiranje podrazumijeva korištenje enkodera i drugih senzora na robotima za predviđanje pozicije i orijentacije. Glavni nedostatak odometrije jest akumulacija pogrešaka s kretnjom mobilnog robota. Za odometriju kotača to proizlazi iz odstupanja radijusa i udaljenosti kotača od nominalnih veličina korištenih u direktnoj kinematici robota. Kalibracija odometrije kotača mobilnih robota podrazumijeva perturbaciju nominalnih kinematskih parametara koja rezultira točnijim praćenjem vanjske reference. Izrada i montaža mobilnog robota su glavni izvori nesavršenosti svojstvenih robotu koje utječu na točnost odometrije kotača. Greške lokalizacije ovih izvora nazivaju se sustavne greške. One su determinističke te ih je moguće spregnuti kalibracijom parametara kinematske strukture. U ovu vrstu izvora grešaka odometrije spadaju nejednaki promjeri kotača, razlika prosječnog promjera od nominalnog promjera. nesavršena montaža kotača i nesigurnost udaljenosti kotača (engl. "wheelbase") [2][3][9][21]. Drugu vrstu grešaka predstavljaju nesustavne greške koje nisu svojstvene kinematskim karakteristikama mobilnih robota. Nesustavne pogreške su stohastičke prirode te ih nije tako lako kompenzirati. Takve greške nastaju zbog vanjskih utjecaja. Nesavršenosti podloge, odnosno udubine i izbočine, klizave podloge te prepreke izvori su nesustavnih pogrešaka. Proklizavanje zbog prevelike akceleracije na kotačima, vanjskih sila i naglog skretanja također spadaju pod istu kategoriju. Za suzbijanje nesustavnih pogrešaka često se koriste dodatni senzori te radi fuzija različitih izvora odometrije [6] [7] [12] [13][14].

Rad je organiziran u pet poglavlja, uključujući uvod i zaključak. U drugom poglavlju rada najprije se prolazi kroz osnovne strukture mobilnih robota s kotačima. Za svaku strukturu daje se pregled dosad korištenih metoda i eksperimenata za suzbijanje grešaka odometrije. Zatim se opisuje struktura mobilnog robota s četiri nezavisno zakretna i četiri nezavisno pogonjena kotača. Točnost odometrije navedene strukture je objekt ovoga rada. Za nju se pokazuju jednadžbe direktne kinematike koje služe za estimaciju pozicije i orijentacije [1].

Sljedeće poglavlje bavi se kalibracijom radijusa i pozicije svih kotača u odnosu na središte robota koji su parametri direktne kinematike robota. Opisuje se robot korišten u praktičnom dijelu ovoga rada. Pokazuje se šest trajektorija korištenih u kalibraciji. Objašnjava se optimizacija parametara minimizacijom funkcije cilja ovisne o greški praćenja referentnih

trajektorija. Opisuju se četiri algoritma korištenih za optimizaciju. Dva algoritma su gradijentna, dok su preostala dva stohastička. Nakon postavljanja teorijskih temelja, napravio se praktični dio rada. Svaka od šest trajektorija snimila se pet puta. Pokazuju se rezultati optimiranja parametara na temelju skupu podataka od trideset snimljenih trajektorija. Rezultati svake metode se uspoređuju s nominalnom ocjenom točnosti robota.

Četvrto poglavlje bavi se fuzijom odometrije različitih izvora. Prvo se ukratko objašnjava prošireni Kalmanov filtara. Predstavljaju se dodatni senzori korišteni za poboljšanje točnosti odometrije. Nakon toga slijedi drugi dio praktičnog rada, odnosno primjena proširenog Kalmanovog filtra. Fuzija se snimila za najbolju i najlošiju metodu prema rezultatima kalibracije parametara. Također se primijenila na robotu bez kalibriranih parametara. Na kraju se pokazuje kakav utjecaj na rezultate ima prethodna kalibracija parametara.

2. PREGLED STRUKTURA MOBILNIH ROBOTA I KORIŠTENIH METODA KALIBRACIJE ODOMETRIJE

2.1. Osnovne strukture mobilnih robota i metode kalibracije odometrije

Najkorištenije strukture mobilnih robota s kotačima su: diferencijalni robot s dva kotača, mobilni roboti automobilske strukture, posebice Ackermannova struktura i svesmjerni roboti. Diferencijalni robot s dva kotača je najjednostavnija kinematska struktura. Samim time njeno upravljanje nije toliko komplicirano. Ima manje izvora grešaka odometrije te njena kalibracija rezultira većom točnošću. Prvi postupci kalibracije ove strukture osmišljeni su od strane Borensteina i Fenga 1995. godine [2]. Po njima su glavni izvori grešaka estimacije nejednaki promjeri kotača i odstupanje udaljenosti između dodirnih ploha kotača od nominalne vrijednosti. Zbog toga robot pri linearnom gibanju skreće te se pri skretanju zakreće s kutnim odstupanjem. Njih dvojica osmislili su UMBmark postupak za ocjenu i kalibraciju diferencijalne strukture. Naime, robot se pogoni po kvadratnim trajektorijama [Slika 2] s 5 ponavljanja u oba smjera kao bi se suzbile nesustavne greške i međusobne kompenzacije pogrešaka. Geometrijskom analizom izvedeni su izrazi za računanje novih parametara ovisnih o dobivenim greškama slijeđenja. Osmišljen je i prošireni UMBmark test s umetnutim preprekama za ocjenu osjetljivosti robota na nesustavne greške. Godine 2012. Jung i Chung [3] tvrde da je robot cijelo vrijeme podložan međudjelovanju izvora grešaka te se pojave ne mogu gledati odvojeno. Na temelju izraza za međuovisnost (Lee [4]) se dobivaju novi analitički izrazi za parametre.

Slika 1. Diferencijalna struktura s dva kotača [4]

Slika 2. UMB mark putanja za kalibraciju diferencijalnog robota [2]

Alternativa kvadratnim putanjama može biti dvosmjerna kružna putanja [5]. Prednost ove metode je što nema čistih rotacija u mjestu koje su izvor proklizavanja. Hoseinnezhad [6] je pokazao metodu u kojoj se koristi mapirano okruženje dobiveno fuzijom senzora blizine. U kombinaciji s neuronskim mrežama se provodi automatska kalibracija grešaka odometrije. U radu [7] pokazana i kalibracija senzora. Osim uobičajenih kinematskih (geometrijskih) parametara točnost lokalizacije uvjetuju i nesavršenost geometrije senzora.

Ackermanova struktura mobilnog robota je automobilska struktura čiji kotači prilikom skretanja opisuju kružnice oko iste točke. Centar rotacija prednjih kotača nalazi na pravcu koji prolazi spojnicom zadnjih kotača. Prednji kotači su upravljive orijentacije te se prilikom skretanja jedan kotač zakreće više od drugoga. Ova struktura podrazumijeva diferencijalni pogon. Drugim riječima, raspodjela kutnih brzina i momenata obavlja se preko diferencijala. Snaga se raspodjeljuje ovisno o kutu upravljanja. Automobilska struktura složenija je za upravljanje od diferencijalne s dva kotača.

Slika 3. Mobilni robot Ackermanove strukture [8]

U prvotnoj formi se estimacija pozicije i orijentacije obavlja signalima enkodera zadnjih kotača. Prava orijentacija definirana je isključivo kutem upravljanja. Kod linearnog gibanja će diferencijal zbog nejednakih promjera kotača raspoređivati različite kutne brzine. Pretpostavka je da su kotači jednakog promjera te se iz toga razloga predviđa skretanje. Za pravocrtno gibanje diferencijalni robot s dva kotača predviđa idealno praćenje, a uistinu griješi. Na drugu stranu mobilni robot Ackerman strukture predviđa skretanje dok točno prati referencu.

Slika 4. Usporedba estimacije robota [8]

Za ovu strukturu izvedena je analitička kalibracija parametara s trajektorijom od dvaju pravocrtnih i polukružnih gibanja [9] [Slika 5]. U postupcima kalibracija se za izvore grešaka uzimaju promjeri kotača i udaljenost između zadnjih kotača [10]. Pokazan je i pristup koji umjesto udaljenosti kotača izvorom smatra kutno odstupanje kuta upravljanja [11]. McKerrow i Ratner [12] su predstavili kalibraciju sustavnih grešaka ultrazvučnim senzorom. Pokazalo se da to nije najprikladnije rješenje jer senzor zahtjeva kalibraciju te se time dobiva povećava kompleksnost sustava. Nesigurnost estimacije raste s prijeđenim putem. Tako je razvijena kompenzacija nesustavnih grešaka spajanjem odometrije i magnetnih senzora [13][14]. Fuzija GPS-a i odometrije pokazala se u [15]. Ispada da se ovaj način estimiranja pozicija ne može primijeniti za male brzine robota. Korištenje proširenog Kalmanovog filtra pokazano je u [9]. Geometrija prednjih kotača je prebačena na zadnje kotače te se primjenjuje fuzija enkodera prednjih i zadnjih kotača. Redundancija snimanja rezultira točnijom lokalizacijom.

Slika 5. Trajektorija za kalibraciju mobilnog robota automobilske strukture [8]

Svesmjerni mobilni roboti kompliciraniji su za upravljanje i kalibraciju. Kalibracija s obzirom na proklizavanje, trenje u ležajevima i dodirnim točkama je pokazana u [16] na svesmjernom robotu s 4 kotača. Kalibraciju na temelju pravocrtne putanje pokazana je u [17]. Postoje metode kalibracije neovisne o izvorima grešaka [18]. Usporedba numeričke gradijentne metode i genetskog algoritma pokazuje se u [19][20][22]. Jedan eksperiment uveo je takozvane efektivne parametre [21]. Ti parametri predstavljaju umnoške osnovnih geometrijskih parametara koji stoje u direktnoj kinematici. Kalibriraju se umnošci te se tako smanjuje se broj nepoznatih parametara. Samim time smanjuje se i vrijeme izvršavanja kalibracije i povećava se točnost

lokalizacije. Prijedlog trajektorija za kalibraciju pokazuje [Slika 7][19]. Sažet pregled i evolucija postupaka kalibracije svih struktura robota dani su u [23].

Slika 6. Svesmjerni robot s 3 kotača

Slika 7. Predložene trajektorije za kalibraciju svesmjernih robota [19]

2.2. Mobilni robot s četiri nezavisno zakretna i nezavisno pogonjena kotača

U ovom radu se koristi 4WIS4WID (engl. *"four-wheel-independent steering and four-wheel-independent driving*") struktura mobilnog robota koja se sastoji od četiri kotača [1]. Svakome kotaču moguće je neovisno mijenjati orijentaciju i kutnu brzinu. Iz toga razloga spada u kategoriju svesmjernih robota (engl. *"omnidirectional robots*"). Za holonomno gibanje, odnosno za gibanje s proizvoljnom orijentacijom u proizvoljnom smjeru, ovaj robot prvo mora podesiti orijentaciju kotača. Po tome se razlikuje od klasičnih svesmjernih robota koji to mogu učiniti bez promjene orijentacije kotača jer posjeduju svesmjerne kotače. Fleksibilnost korištene strukture razlog je sve veće primjene i u automobilskoj industriji. Neovisno zakretanje prednjih i zadnjih kotača omogućuje jednostavnije parkiranje i bolje manevriranje.

Slika 8. Shematski prikaz 4WIS4WID robota [1]

Robot je pogonjen preko četiri motora za brzinu i četiri motora za orijentaciju kotača. U globalnom koordinatnom sustavu opisan je s komponentama pozicije x i y, te preko komponente orijentacije θ . I-tom kotaču robota dodaje pridjeljuje se oznaka w_i . Značajke koje opisuju kotač su orijentacija δ_i , udaljenosti od kinematskog težišta a_i i b_i . Pretpostavka je da su težište mase i kinematski centar u istoj točki.

Slika 9. Kinematska struktura 4WIS4WID robota [1] $(x_{w1}^r, y_{w1}^r) = (a, b)$

(2.1)

$$(x_{w2}^r, y_{w2}^r) = (-a, b)$$

(2.2)

$$(x_{w3}^r, y_{w3}^r) = (-a, -b)$$

(2.3)

$$(x_{w4}^r, y_{w4}^r) = (a, -b)$$

(2.4)

Svaki kotač definira radijus r_i , a u idealnom slučaju smatra se uz jednaki radijus i jednaka težina svakog kotača. Naravno svaki kotač opisuje kutna brzina ω_i , odnosno linearna brzina v_i . Apsolutni iznosi brzina jednaki su korijenu sume kvadrata ortogonalnih komponenata. Za uvjete bez proklizavanja može se izvesti odnos između brzina pojedinih kotača v_i i brzine robota v, gdje ω označava promjenu orijentacije robota. Uvrštavanjem parametara kotača u jednadžbe (2.8) i (2.9) se dobiva matrična jednadžba (2.10)

$$v_i = r_i \omega_i$$

(2.5)

$$v_{i} = \sqrt{v_{xi}^{2} + v_{yi}^{2}}$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2}}$$

$$(2.6)$$

$$v = \sqrt{v_{x}^{2} + v_{y}^{2}}$$

$$(2.7)$$

$$v_{xi} = v_{i} \cos(\delta_{i}) = v_{x} - y_{wi}^{r} \omega$$

$$(2.8)$$

$$v_{yi} = v_{i} \sin(\delta_{i}) = v_{y} + x_{wi}^{r} \omega$$

(2.9)

$$\mathbf{P}\begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = \mathbf{X}\begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix}$$
(2.10)

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & -b \\ 0 & 1 & a \\ 1 & 0 & -b \\ 0 & 1 & -a \\ 1 & 0 & b \\ 0 & 1 & -a \\ 1 & 0 & b \\ 0 & 1 & a \end{bmatrix}$$

(2.11)

$$\mathbf{X} = \begin{bmatrix} \cos(\delta_1) & 0 & 0 & 0\\ \sin(\delta_1) & 0 & 0 & 0\\ 0 & \cos(\delta_2) & 0 & 0\\ 0 & \sin(\delta_2) & 0 & 0\\ 0 & 0 & \cos(\delta_3) & 0\\ 0 & 0 & \sin(\delta_3) & 0\\ 0 & 0 & 0 & \cos(\delta_4)\\ 0 & 0 & 0 & \sin(\delta_4) \end{bmatrix}$$

Množenje jednadžbe s lijeve strane pseudo-inverznom matricom \mathbf{P}^+ daje eksplicitni izraz za vektor brzina robota ovisan o brzinama v_i i orijentacijama δ_i pojedinih kotača.

(2.12)

Diplomski rad

Jakov Vitko

$$\mathbf{P}^{+} = \begin{bmatrix} 1/4 & 0 & 1/4 & 0 & 1/4 & 0 & 1/4 & 0 \\ 0 & 1/4 & 0 & 1/4 & 0 & 1/4 & 0 & 1/4 \\ \frac{-b}{-b} & \frac{a}{-K} & \frac{-b}{-K} & \frac{-a}{-K} & \frac{b}{-K} & \frac{-a}{-K} & \frac{b}{-K} & \frac{a}{-K} \end{bmatrix}$$

$$K = 4a^{2} + 4b^{2}$$
(2.13)

$$\begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = \begin{bmatrix} \cos(\delta_{1}) & \cos(\delta_{2}) & \cos(\delta_{3}) & \cos(\delta_{4}) \\ \sin(\delta_{1}) & \sin(\delta_{2}) & \sin(\delta_{3}) & \sin(\delta_{4}) \\ W_{1} & W_{2} & W_{3} & W_{4} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix}$$

$$W_{i} = (-y_{wi}^{r}\cos(\delta_{i}) + x_{wi}^{r}\sin(\delta_{i}))/(4(x_{wi}^{r})^{2} + 4(y_{wi}^{r})^{2})$$

$$(2.16)$$

Nakon rotacije sustava za θ iz koordinatnog sustava robota u nepomični vanjski koordinatni sustav dobiva se konačni izraz za vanjske brzine. Taj izraz predstavlja direktnu kinematiku ovog mobilnog robota.

$$\begin{bmatrix} v_{x} \\ v_{y} \\ \omega \end{bmatrix} = \begin{bmatrix} \cos(\delta_{1} + \theta) & \cos(\delta_{2} + \theta) & \cos(\delta_{3} + \theta) & \cos(\delta_{4} + \theta) \\ \sin(\delta_{1} + \theta) & \sin(\delta_{2} + \theta) & \sin(\delta_{3} + \theta) & \sin(\delta_{4} + \theta) \\ W_{1} & W_{2} & W_{3} & W_{4} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix} = \mathbf{J} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{bmatrix}$$
(2.17)

Na promatranu strukturu ne mogu se primijeniti postupci za Ackermannovu automobilsku strukturu iako postoje sličnosti, kao npr. jednak broj kotača. Razlog tomu je što Ackermanova struktura ima diferencijalni pogon. Promatrana struktura spada pod svesmjerne mobilne robote te će se stoga na njoj primijeniti numerička optimizacija parametara.

3. KALIBRACIJA ODOMETRIJE MOBILNOG ROBOTA ZADANE STRUKTURE

3.1. Mobilni robot korišten u praktičnom dijelu rada

Robot na kojemu su se provodila ispitivanja razvijen je od strane Fakulteta strojarstva i brodogradnje, Sveučilišta u Zagrebu [24][25]. Razvijen je u svrhu projekta provođenja nerazornih ispitivanja u građevini [26]. Ima sposobnost penjanja po zidovima (engl. "*wall-climbing robot, WCR*"). Ovakvi roboti se opremaju senzorima, kao što je penetrirajući radar (engl. "*ground penetrating radar, GPR*"). Tako se dobiva brza i sigurna inspekcija građevinskih struktura. Kretanje uzduž vertikalnih struktura omoguće adhezijski sustav. U ovom slučaju koristi se hibridni adhezijski sustav koji se sastoji od električnog ventilatora s usmjerenim protjecanjem zraka i manjim pogonskim jedinicama koje odgovaraju pogonu dronova. Glavni električni ventilator proizvodi negativni tlak i potisak, a manje jedinice su zaslužne samo za potisak. Kombinacija sila na starijem prototipu prikazana je slici 10. Hibridna struktura omogućava veću fleksibilnost i robusniju adheziju za površinu. Kombinacija neovisno pokretanih kotača i hibridnog adhezijskog sustava rezultira brzom kretnjom i inspekcijom građevina.

Slika 10. Prikaz sila adhezijskog sustava [24]

Slika 11. Penjanje robota vertikalno po zidu

Kućište robota je napravljeno od cijevi karbonskih vlakna i ASA materijala aditivnim procesom 3D printanja. Za pogon kotača koriste se Dynamixel smart servo motori koji su napajani s 24 V laboratorijskim napajanjem od 3 kW. Za relativnu lokalizaciju koriste se enkoderi servomotora. Robot trenutno nije opremljen IMU BNO055 jedinicom kako je prikazano na slici. Adhezijska sila se mjeri preko dva senzora sile. Motori su upravljani OpenCR modulom temeljenom na STM32 mikrokontroleru, dok je za upravljanje adhezijskim sustavom korišten NXP iMXRT1062 mikrokontroler. Glavna upravljačka jedinica je Rasberry Pi 4B. Komunikacija prema oba mikrokontrolera provodi se USB protokolom. Dimenzije robota su 380 x 300 mm. Ukupna masa iznosi 3.25 kg te ima nosivost od 1.5 kg.

Slika 12. Dijelovi korištenog robotskog sustava [25]

Regulacijska struktura upravljanja mobilnim robotom izvedena je u kaskadnoj formi. U ovoj formi je petlja za upravljanje dinamikom robotskog sustava podređena kinematskoj petlji koja regulira praćenje vanjske reference odnosno trajektorije \mathbf{q}_{d} . Izlaz iz kinematskog regulatora je vektor \mathbf{v}_{c} , u kojem su spremljene referentne orijentacije i kutne brzine pojedinih kotača.

Slika 13. Kaskadni sustav regulacije [1]

Za dobivanje prave orijentacije i položaja robota se koristio OptiTrack [35] sustav za praćenje pokreta. Osam kamera koje je potrebno kalibrirati su postavljenje na nosivu konstrukciju [Slika 14] [Slika 15]. Na robotu je postavljeno šest marker za praćenje [Slika 16]. U programu Motive može se vidjeti grafički prikaz robota [Slika 17] [34]. Pomoću postavljenih markera u programu se definira koordinatni sustav robota te se može dobiti informacija o položaju i orijentaciji. Sustav za praćenje ima deklariranu točnost od 0,2 mm.

Slika 14. Prvih pet kamera OptiTrack sustava za praćenje pokreta

Slika 15. Preostale tri kamere OptiTrack sustava za praćenje pokreta

Slika 16. Robot s označenim koordinatnim sustavom i postavljenih šest markera za praćenje

Slika 17. Prikaz robota u programu Motive

3.2. Odabrane trajektorije

U ovom eksperimentu robot se vodi horizontalno po podlozi. Odabrano je tri različitih vrsta gibanja: linearno gibanje [Slika 18], gibanje po kružnici [Slika 23] i rotacija oko z osi [Slika 27]. Linearno gibanje izvodilo se u smjeru x osi, te u smjeru y osi s brzinom robota od 0,05 $\frac{m}{s}$ u duljini od 4 m. Gibanje po kružnici i rotacija oko z osi se izvodila u obrnutom smjeru te zatim

u smjeru (engl, "*counter-clock wise, CCW*") kretanja kazaljke na satu (engl. "*clock wise, CW*"). Odabran je radijus kružnice od 0,5 m s kutnom brzinom od $\frac{2\pi}{80} \frac{\text{rad}}{\text{s}}$, dok se rotacija oko z osi provodila brzinom od $\frac{2\pi}{40} \frac{\text{rad}}{\text{s}}$. Ove trajektorije odabrane su tako da bi se pobudili svi modovi pogrešaka. Nadalje, svaka trajektorija se snimala pet puta kako bi se smanjio utjecaj vanjskih nesustavnih grešaka. Uzevši u obzir šest različitih trajektorija s pet ponavljanja, napravljeno je ukupno trideset skupova podataka za kalibraciju.

2. Linearno gibanje – y os

Slika 18. Referentne trajektorije – linearna gibanja

Slika 20. Linearno vođenje robota u smjeru osi x

Slika 21. Referentna linearna trajektorija u smjeru osi y

Slika 22. Linearno vođenje robota u smjeru osi y

Slika 23. Referentne trajektorije – kružna gibanja

Slika 24. Referentna kružna trajektorija u smjeru suprotnog od kazaljke na satu

Slika 25. Referentna kružna trajektorija u smjeru kazaljke na satu

Slika 26. Vođenje robota po kružnici u suprotnom smjeru od kazaljke na satu

5. Rotacija oko z osi – CCW smjer

6. Rotacija oko z osi – CW smjer

Slika 27. Referentne trajektorije – rotacije oko osi

Slika 28. Referentna trajektorija – rotacija oko z osi u smjeru suprotnog od kazaljke na satu

Slika 29. Referentna trajektorija – rotacija oko z osi u smjeru kazaljke na satu

Slika 30. Rotacija robota oko z osi

3.3. Optimiranje parametara direktne kinematike robota

3.3.1. Estimacija pozicije i orijentacije robota

Robot se upravlja tako da slijedi pokazane referentne trajektorije. Snimaju se kutne brzine i orijentacije svih kotača te apsolutna pozicija i orijentacija robota. Estimacija orijentacije i pozicije robota provodi se tako da se snimljene pozicije $\delta_{i,k}$ i kutne brzine $\omega_{i,k}$ dobivene iz enkodera pojedinih kotača uvrštavaju u jednadžbu direktne kinematike. Na taj se način dobivaju brzine u svakom diskretnom koraku uzorkovanja *k*.

$$\begin{bmatrix} v_{x,k} \\ v_{y,k} \\ \omega_k \end{bmatrix} = \begin{bmatrix} \cos\left(\delta_{1,k} + \theta_k\right) & \cos\left(\delta_{2,k} + \theta_k\right) & \cos\left(\delta_{3,k} + \theta_k\right) & \cos\left(\delta_{4,k} + \theta_k\right) \\ \sin\left(\delta_{1,k} + \theta_k\right) & \sin\left(\delta_{2,k} + \theta_k\right) & \sin\left(\delta_{3,k} + \theta_k\right) & \sin\left(\delta_{4,k} + \theta_k\right) \\ W_1 & W_2 & W_3 & W_4 \end{bmatrix} \begin{bmatrix} r_1 \omega_{1,k} \\ r_2 \omega_{2,k} \\ r_3 \omega_{3,k} \\ r_4 \omega_{4,k} \end{bmatrix}$$
(3.1)

Zatim se za svaki diskretni korak primijenila eksplicitna (unazadna) Eulerova integracija (engl. "*backward Euler integration*") (3.2) te se dobiva estimacija pozicije u svakom zabilježenom koraku.

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ \theta_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ \theta_k \end{bmatrix} + (t_{k+1} - t_k) \begin{bmatrix} v_{x,k} \\ v_{y,k} \\ \omega_k \end{bmatrix}$$

Prilikom upravljanja za izračun kutnih brzina i orijentacija kotača se uzimaju nominalni parametri robota. Odnosno kinematski kontroler i zatim dinamički kontroler nameću na motore kuteve zakreta i kutne brzine kotača koje bi robot bez nesavršenosti vodile bez greške po zadanoj referenci. Pošto postoje sustavne greške kinematske strukture pravo kretanja robota vođenog idealnim signalima odstupat će od referentnih veličina. Nadalje, inicijalna estimacija računa se s nominalnim parametrima kinematske strukture i upravljačkim veličinama motora koje za idealne parametre daju točno praćenje reference. Iz toga razloga inicijalna estimacija predviđa savršeno praćenje zadanih trajektorija.

3.3.2. Minimizacija sume kvadrata pogrešaka varijabli stanja i korištene metode

Estimacija brzina, odnosno pozicije i orijentacije ovisi o radijusima kotača r_i , te o udaljenosti svakog kotača od središta robota (x_{wi}^r, y_{wi}^r) . Kalibracijski postupak spada pod probleme prilagođavanja modela (engl. "*model fitting*"). Ocjena estimacije vrši se funkcijom cilja ovisnoj o grešci između apsolutne i estimirane trajektorije. Cilj kalibracije je pronalazak parametara nelinearnog modela direktne kinematike koji opisuju krivulju s minimalnom pogreškom, odnosno minimalnom ocjenom funkcije cilja. Kako se ukupna suma pogrešaka ne bi kompenzirala predznakom pogreške se odabrala suma kvadrata pogreške po svakoj komponenti vektora stanja (x, y, θ) za svaki diskretni korak k i u *s*-tom snimanju. Isto tako funkcija u obliku kvadrata pogrešaka osigurava konveksnost te je moguće naći minimum.

$$J = \sum_{s} \sum_{k} (x_{est}(s,k) - x_{aps}(s,k))^{2} + (y_{est}(s,k) - y_{aps}(s,k))^{2} + (\theta_{est}(s,k) - \theta_{aps}(s,k))^{2}$$

Kalibrira se ukupno dvanaest parametara, četiri za svaki kotač:

- udaljenost kotača od središta po x osi (x^r_{wi})
- udaljenost kotača po y osi (y_{wi}^r)
- radijus kotača (*r_i*).

Vektoru \mathbf{z} (3.7) pridijelit će se traženi iznosi parametara direktne kinematike koji se žele kalibrirati (3.4)(3.5)(3.6). Parametri se moraju zadržati unutar razumnih granica, što predstavlja jedino ograničenje kalibracije. Optimizacijski problem definiran je jednadžbom (3.8), koja minimizira funkciju najmanjih kvadrata $J(\mathbf{z})$ (3.3) nelinearno ovisnu o parametrima

(3.3)

direktne kinematike. Perturbacija parametara se ograničila matricama LB i UB na ± 5 % nominalnih vrijednosti.

$$\mathbf{x}_{\mathbf{w}}^{T} = \begin{bmatrix} x_{w1}^{r} & x_{w2}^{r} & x_{w3}^{r} & x_{w4}^{r} \end{bmatrix}$$
(3.4)

$$\mathbf{y_w}^T = \begin{bmatrix} y_{w1}^r & y_{w2}^r & y_{w3}^r & y_{w4}^r \end{bmatrix}$$

$$\mathbf{z}^{T} = [\mathbf{x}_{\mathbf{w}}^{T} \quad \mathbf{y}_{\mathbf{w}}^{T} \quad \mathbf{r}_{\mathbf{w}}^{T}]$$
(3.6)

(3.7)

 $\min_{\mathbf{z}} J(\mathbf{z}) \ za \ \mathbf{LB} \le \mathbf{z} \ \le \mathbf{UB}$

 $\mathbf{r_w}^T = \begin{bmatrix} r_1 & r_2 & r_3 & r_4 \end{bmatrix}$

(3.8)

Za pronalazak optimalnih parametara koristile su se dvije gradijentne metode: fmincon i Levenberg – Marquardt. Također su se koristila i dva stohastičke algoritma: klasični genetski algoritam i Particle Swarm algoritam. Fmincon i Levenberg – Marquardt metode u Matlab-u spadaju pod metode nelinearnih najmanjih kvadrata za prilagođavanja modela [29]. U općem slučaju to podrazumijeva pronalazak vektora **z** koji minimizira funkciju sume kvadrata uz moguća ograničenja. Cijela definicija problema koji metode rješavaju opisan je jednadžbom (3.9). U ovom slučaju, kalibracijski problem ima jedino ograničenja nejednakosti gornje i donje vrijednosti traženog vektora. Može se zaključiti da je kalibracijski problem opisan jednadžbom (3.8) spada u podskup problema koji ove metode rješavaju.

$$\min_{\mathbf{z}} ||F(\mathbf{z})||_{2}^{2} = \min_{\mathbf{z}} \sum_{i} F_{i}^{2}(\mathbf{z}) = za \begin{cases} \mathbf{c}(\mathbf{z}) \leq \mathbf{0} \\ \mathbf{ceq}(\mathbf{z}) = \mathbf{0} \\ \mathbf{A} \mathbf{z} \leq \mathbf{0} \\ \mathbf{Aeq} \mathbf{z} = \mathbf{beq} \\ \mathbf{LB} \leq \mathbf{z} \leq \mathbf{UB} \end{cases}$$

3.3.2.1. Levenberg – Marquardt metoda

Nelinearna estimacija parametara predstavlja čest slučaj u upravljačkoj praksi (engl. "Control systems"). Problem koji rješava Levenberg – Marquardt metoda za diskretni slučaj je opisana jednadžbom (3.10). Njom se minimizira suma kvadrata greške estimacije $y(\mathbf{z}, t_k)$ i izlaza sustava $\varphi(t_k)$ za svaki diskretni trenutak t_k . Metoda uvodi vektor $\mathbf{R}(\mathbf{z})$ (3.11) čiji su elementi

(3.9)

greške svakog diskretnog koraka. U slučaju realnih trajektorije, očekuje se da će iznos reziduala vektora $||\mathbf{R}(\mathbf{z})||$ u optimumu biti malog iznosa. Za traženje optimuma specifično se definiraju gradijentni vektor, te Hessian i Jacobian matrice funkcije cilja [29]. Spajaju se prednosti Gauss-Newton-ove metode i metode gradijentnog spusta kako bi se odredio smjer kretnje prema optimalnom vektoru \mathbf{z} .

$$\min_{\mathbf{z}\in\mathfrak{R}^n} f(\mathbf{z}) = \sum_{k=1}^m ((y(\mathbf{z}, t_k) - \varphi(t_k))^2$$
(3.10)

$$\mathbf{R}(\mathbf{z}) = \begin{bmatrix} y(\mathbf{z}, t_1) - \varphi(t_1) \\ y(\mathbf{z}, t_2) - \varphi(t_2) \\ \dots \\ y(\mathbf{z}, t_m) - \varphi(t_m) \end{bmatrix}$$
(3.11)

3.3.2.2. Fmincon metoda

Drugi korišten gradijentni pristup je fmincon metoda. Za minimiziranje nelinearne sume kvadrata pogreške ova metoda koristi se "interior-point" algoritam koji spada pod modifikaciju klasičnog fmincon pristupa [29]. Funkcija cilja $f(\mathbf{z})$ ovdje predstavlja vektor te se minimizira suma kvadrata definira kao $\mathbf{f}^{T}(\mathbf{z})\mathbf{f}(\mathbf{z})$. Minimizacijski problem istog je oblika jednadžbom (3.9). Lagranžijan uz ograničenja jednakosti i nejednakosti definiran je jednadžbom (3.12). Lagrange-ovi multiplikatori za ograničenja jednakosti označeni su s $\lambda_{\mathbf{E}}$, a za ograničenja nejednakosti s $\lambda_{\mathbf{I}}$. Koriste se Karush-Kuhn-Tucker (KKT) uvjeti optimalnosti. Ova metoda za traženje optimalnih rješenja iterativno aproksimira Hessian matrice i gradijentni vektor u svakom koraku optimizacije.

$$L(\mathbf{z}, \boldsymbol{\lambda}_{\mathrm{E}}, \boldsymbol{\lambda}_{\mathrm{I}}) = ||\mathbf{f}(\mathbf{z})||_{2}^{2} + \boldsymbol{\lambda}_{\mathrm{E}}^{T} \mathbf{ceq}(\mathbf{z}) + \boldsymbol{\lambda}_{\mathrm{I}}^{T} \mathbf{c}(\mathbf{z})$$
(3.12)

3.3.2.3. Genetski algoritam

Genetski algoritmi u pravilu daju zadovoljavajuće rješenje za svaki tip problema [Slika 31] [31]. Genetski algoritmi se baziraju na nasumičnosti te dobro pokrivaju cijelu moguću domenu parametara. Za kalibraciju parametara napravljen je vlastiti genetski algoritam [Slika 32][I]. Inicijalni korak genetskog algoritma je definiranje populaciju kao *N* skupova parametara. Svaki set parametara predstavlja jednog pojedinca koji se ocjenjuje prema funkciji cilja. Ruletnim pravilom biraju se potencijalni roditelji. Od potencijalnih roditelja neki parovi stvarno ulaze u križanje i daju potomke s kombinacijom svojih karakteristika. Za križanje se eksperimentiralo različitim algoritmima za što bolju konvergenciju i pokriće domene. Poslije križanja potomci su podložni mutaciji gdje im se mijenjaju samo pojedinačni parametri.

Skala "svih" problema

Slika 31. Uspješnost genetskih algoritama [31]

Algorithm 2: Genetic algorithm for direct kinematics parameters

Inputs:

nominalParameters \leftarrow [a1, a2, a3, a4, b1, b2, b3, b4, r1, r2, r3, r4]; B \leftarrow 12; // number of gens/direct kinematics parameters N; // number of chromosomes/parameter sets used, e.g. 10

Initialization:

for $i \leftarrow 1$ to B do if nominalParameters(i) > 0 then $| LB(i) \leftarrow 0.95*nominalParameters<math>(i)$; $UB(i) \leftarrow 1.05*nominalParameters<math>(i)$; end else $| LB(i) \leftarrow 1.05*nominalParameters<math>(i)$; $UB(i) \leftarrow 0.95*nominalParameters<math>(i)$; end

\mathbf{end}

InitPopulation; // create N random parameter sets in range [LB, UB] InitialFitness; // smallest cost function evaluation = best fitness paramsBest \leftarrow bestFittnesSet;

Main:

```
while iter < iterMax do

RouletteParentSelection;

Crossover;

Mutation;

Elitism;

Population \leftarrow Offspring;

Fitness;

paramsBest \leftarrow bestFittnesSet;

end

Output:

paramsBest
```

Slika 32. Pseudo kod korištenog genetskog algoritma

3.3.2.4. Particle Swarm algoritam

Drugi korišteni stohastički algoritam je Particle Swarm [32][33] koji vuče inspiraciju iz kretanja živih organizama. Algoritam pretražuje prostor funkcije cilja tako da prilagođava pozicije čestica u domenskom prostoru. Svaka čestica rasprostranjena u prostoru ima determinističku i stohastičku komponentu kretanja. S jedne strane privlači ju pozicija globalno najbolje ocijenjene čestice i individualna najbolja pozicija u prošlosti. S druge strane ima tendenciju nasumičnog kretanja. Optimizacija započinje tako da se svakoj čestici dodjeli nasumična

pozicija u području interesa i brzina u određenim granicama. Nakon toga dolazi prvobitna ocjena svake čestice . Zatim se u petlji ponavlja sljedeći proces. Mijenja se brzina svake čestice ovisno o prošloj brzini čestice, globalno nađenoj najboljoj poziciji svih čestica g^* , staroj najboljoj individualnoj poziciji p_i^* , trenutnoj poziciji x_i^* i nasumičnim komponentama u_1 i u_2 . Sve to prikazuje jednadžba (3.13). Parametri W, c_1 i c_2 određuju kako će se pretraživanje područja odviti. Analogno uz žive organizme, W predstavlja inercijalnu komponentu kretanja jer množi trenutnu brzinu. Njime se definira odnos raspon pretraživanja područja i brzine konvergencije. Parametar c_1 množi individualno najbolju poziciju i stoga predstavlja kognitivnu komponentu čestice. Na kraju c_2 stoji uz globalno najbolju ocjenu svi uzoraka što znači da ona predstavlja socijalnu komponentu. Nakon izračuna brzine slijedi promjena pozicija svake čestice (3.14) te ponovno radi ocjena funkcije cilja. U slučaju kalibracije jedne čestice predstavlja traženi vektor parametara **z**. Tada u_1 i u_2 postaju vektori veličine broj traženih parametara te se obavlja skalarni produkt vektora. Cijeli proces se ponavlja sve dok se ne zadovolji uvjet konvergencije ili premaši fiksni broj ponavljanja.

$$v_{i,k+1}^{*} = W * v_{i,k}^{*} + c_{1}u_{1}(p_{i}^{*} - x_{i,k}^{*}) + c_{2}u_{1}(g^{*} - x_{i,k}^{*})$$

$$(3.13)$$

$$x_{i,k+1}^{*} = x_{i,k}^{*} + v_{i,k+1}^{*}$$

$$(3.14)$$

Svi postupci kalibracije, obrade podataka, postupci prikazivanja i analize podataka provedeni su u Matlab-u. Za minimizaciju utjecaja vanjskih poremećaja (nesavršenosti podloge, proklizavanja) se svaka trajektorija ponovila 5 puta. Ukupno 30 snimanja podrazumijeva veliku količinu podataka. Podaci istog gibanja nisu se usrednjavali na jedan skup jer se tako dobila veća pogreška između apsolutne pozicije i estimacije. Optimizacija se provodila paralelno u 12 odvojenih procesa (engl. "*parallel pool*") te se tako značajno smanjilo vrijeme izvršavanja optimizacije. Koristilo se stolno računalo s 3.5 GHz procesorom i 32 GB RAM memorije.

3.3.3. Rezultati kalibracije parametara direktne kinematike

Za svaku metodu kalibracije i za početnu ocjenu su tablično navedeni iznosi parametara prema nomenklaturi koju definira [Slika 33]. Udaljenost *i*-tog kotača od središta označena je s a_i za xos i s b_i za y os. Radijus *i*-tog kotača ostaje označen s r_i . Prikazane su sve trajektorije i svih pet ponavljanja. Za svaku trajektoriju je dana maksimalna apsolutna pogreška e_{max} koja predstavlja najveću apsolutnu pogrešku svi ponavljanja trajektorije. Također se računaju srednje maksimalne pogreške e_{sr} tako da se suma najvećih grešaka po ponavljanju $e_{n,max}$ podijeli s brojem ponavljanja n. U tablicama je također dana standardna devijacija pogreške σ za svaku varijablu stanja.

$$e_{sr} = \frac{\sum_{n} e_{n,max}}{n}$$

(3.15)

$$(x_{wi}^r, y_{wi}^r) = (a_i, b_i)$$

Slika 33. Oznake parametara svakog kotača

3.3.3.1. Nominalna ocjena točnosti lokalizacije

l'adlica 1. Inicijalni parametri robota						
<i>a</i> ₁ [mm]	<i>a</i> ₂ [mm]	<i>a</i> ₃ [mm]	<i>a</i> ₄ [mm]			
112,5	-112,5	-112,5	112,5			
<i>b</i> ₁ [mm]	<i>b</i> ₂ [mm]	<i>b</i> ₃ [mm]	<i>b</i> ₄ [mm]			
112,5	112,5	-112,5	-112,5			
<i>r</i> ₁ [mm]	<i>r</i> ₂ [mm]	<i>r</i> ₃ [mm]	<i>r</i> ₄ [mm]			
25,40	25,40	25,40	25,40			

.

Slika 34. Rezultati linearnog gibanja u smjeru osi x s inicijalnim parametrima

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,06323	0,061529	0,002120
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_{y} [m]$
0,151524	0,139242	0,015646
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,098895	0,080808	0,014747

				-			
Tahliaa 7	Charles wormultate	lincownog	aihamia	The second second	oci v c in	aiialmim	navamatuina
гариса 2.	стеѕке гедината	mearnoy	VIDAIIIA	u smieru	OSI X S III	спянии	рагашентша
	OI COME I COMPANY		8-~ J	a singer a	001 11 0 111		par anno er men

Slika 35. Rezultati linearnog gibanja u smjeru osi y s inicijalnim parametrima

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,233615	0,223026	0,016376
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,053887	0,050721	0,003303
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,122782	0,118598	0,004426

Tablica 3.	Greške rezu	ultata linearn	og gibanja u	smjeru	osi y s i	ncijalnim	parametrima
------------	-------------	----------------	--------------	--------	-----------	-----------	-------------

Slika 36. Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s inicijalnim parametrima

Fablica 4. Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na	satu s
incijalnim parametrima	

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,065202	0,059866	0,003078
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,043992	0,040622	0,002096
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,11632	0,108808	0,005477

Slika 37. Rezultati gibanja po kružnici u smjeru kazaljke na satu s inicijalnim parametrima

$e_{x,max}$ [m]	$e_{\chi,sr}$ [m]	$\sigma_x [m]$
0,031225	0,02536	0,004108
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	σ _y [m]
0,036231	0,031872	0,0032080
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{\theta} [rad]$
0,064159	0,04768	0,01015

Tablica 5.	Greške rezultata	gibanja po) kružnici u smjeru	kazaljke na satı	ı s inicijalnim
		р	arametrima		

Slika 38. Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s inicijalnim parametrima

Tablica 6.	Greške rezultata rotacije oko z osi u suprotnom smjeru od	kazaljke na satu s
	inicijalnim parametrima	

$e_{x,max}$ [m]	$e_{\chi,sr}$ [m]	$\sigma_x [m]$
0,00265	0,001841	0,000456
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001476	0,001183	0,000228
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,143974	0,140736	0,003427

Slika 39. Rezultati rotacije oko z osi u smjeru kazaljke na satu s inicijalnim parametrima

$e_{x,max}$ [m]	$e_{\chi,sr}$ [m]	$\sigma_x [m]$		
0,001941	0,001777	0,000113		
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$		
0,001493	0,001192	0,0002		
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$		
0,143145	0,13895	0,002828		

Tablica 7. Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s inicijalnim parametrima

3.3.3.2. Ocjena metode Fmincon

<i>a</i> ₁ [mm]	<i>a</i> ₂ [mm]	<i>a</i> ₃ [mm]	<i>a</i> ₄ [mm]
118,1	-118,1	-116,4	112,4
<i>b</i> ₁ [mm]	<i>b</i> ₂ [mm]	<i>b</i> ₃ [mm]	<i>b</i> ₄ [mm]
106,9	118,1	-107,1	-106,9
<i>r</i> ₁ [mm]	<i>r</i> ₂ [mm]	<i>r</i> ₃ [mm]	<i>r</i> ₄ [mm]
25,55	26,67	25,91	25,11

Tablica 8. Parametri dobiveni Fmincon optimizacijom

Slika 40. Rezultati linearnog gibanja u smjeru osi x s parametrima Fmincon optimizacije

Tablica 9.	Greške rezultata	linearnog	gibanja u	smjeru	osi x s	parametrima	Fmincon
		0]	ptimizacij	e			

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,013645	0,009182	0,002706
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_{y} [m]$
0,04145	0,035158	0,006497
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,028451	0,02783	0,000585

Slika 41. Rezultati linearnog gibanja u smjeru osi y s parametrima Fmincon optimizacije

Tablica 10.Greške rezultata linearnog gibanje u smjeru osi x s parametrima Fmincon
optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,07453	0,054148	0,016407
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,010537	0,009029	0,001077
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,044701	0,032804	0,010146

Slika 42. Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s parametrima Fmincon optimizacije

Diplomski rad

Tablica 11.Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s
parametrima Fmincon optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,02027	0,013424	0,00523
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,014224	0,008889	0,004178
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,047266	0,033823	0,010691

Slika 43. Rezultati gibanja po kružnici u smjeru kazaljke na satu s parametrima Fmincon optimizacije

Tablica 12.Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrimaFmincon optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,050298	0,03989	0,010989
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,042266	0,0359080	0,008622
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,103399	0,088964	0,019248

Slika 44. Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s parametrima Fmincon optimizacije

Tablica 13.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s
	parametrima Fmincon optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,004843	0,004411	0,000445
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,0027790	0,002633	0,000122
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,085311	0,079873	0,003751

Slika 45. Rezultati rotacije oko z osi u smjeru kazaljke na satu s parametrima Fmincon optimizacije

Tablica 14.Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrimaFmincon optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,003695	0,003375	0,000555
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,003012	0,002538	0,00037
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,066604	0,06349	0,002253

3.3.3.3. Ocjena metode Levenberg – Marquardt

<i>a</i> ₁ [mm]	<i>a</i> ₂ [mm]	<i>a</i> ₃ [mm]	<i>a</i> ₄ [mm]
114,7	-114,7	-113,2	113,2
<i>b</i> ₁ [mm]	<i>b</i> ₂ [mm]	<i>b</i> ₃ [mm]	<i>b</i> ₄ [mm]
114,2	114,2	-113,9	-107,7
<i>r</i> ₁ [mm]	<i>r</i> ₂ [mm]	<i>r</i> ₃ [mm]	<i>r</i> ₄ [mm]
25,83	25,86	25,86	25,36

 Tablica 15.
 Parametri dobiveni Levenberg – Marquardt optimizacijom

Slika 46. Rezultati linearnog gibanja u smjeru osi x s parametrima Levenberg – Marquardt optimizacije

Tablica 16.	Greške rezultata linearnog gibanja u smjeru osi x s parametrima Levenberg –
	Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,019929	0,018043	0,001436
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,055994	0,046887	0,008901
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,037124	0,030704	0,006899

Slika 47. Rezultati linearnog gibanja u smjeru osi y s parametrima Levenberg – Marquardt optimizacije

Tablica 17.	Greške rezultata linearnog gibanja u smjeru osi y s parametrima Levenberg –
	Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,075779	0,0361	0,026945
$e_{y,max}$ [m]	e _{y,sr} [m]	$\sigma_y [m]$
0,018092	0,015837	0,001502
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,034367	0,018872	0,011059

Slika 48. Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s parametrima Levenberg – Marquardt optimizacije

Tablica 18.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s
	parametrima Levenberg – Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,011171	0,009287	0,001688
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,01469	0,008791	0,003629
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,019434	0,013578	0,00472

Slika 49. Rezultati gibanja po kružnici u smjeru kazaljke na satu s parametrima Levenberg – Marquardt optimizacije

Tablica 19.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima
	Levenberg – Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,039312	0,030473	0,007491
$e_{y,max}$ [m]	e _{y,sr} [m]	$\sigma_y [m]$
0,030246	0,023462	0,004398
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,08627	0,069467	0,01166

Slika 50. Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s parametrima Levenberg – Marquardt optimizacije

Tablica 20.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s
	parametrima Levenberg – Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,001913	0,001694	0,000161
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001161	0,000964	0,000214
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,088568	0,082932	0,003291

Slika 51. Rezultati rotacije oko z osi u smjeru kazaljke na satu s parametrima Levenberg – Marquardt optimizacije

Tablica 21.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima
	Levenberg – Marquardt optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,002173	0,00183	0,000295
$e_{y,max}$ [m]	e _{y,sr} [m]	$\sigma_y [m]$
0,001368	0,001134	0,0002
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,079861	0,075904	0,003117

3.3.3.4. Ocjena genetskog algoritma

<i>a</i> ₁ [mm]	<i>a</i> ₂ [mm]	<i>a</i> ₃ [mm]	<i>a</i> ₄ [mm]
111,4	-114,0	-112,2	107,4
<i>b</i> ₁ [mm]	<i>b</i> ₂ [mm]	<i>b</i> ₃ [mm]	<i>b</i> ₄ [mm]
114,4	114,7	-116,3	-116,2
<i>r</i> ₁ [mm]	<i>r</i> ₂ [mm]	<i>r</i> ₃ [mm]	<i>r</i> ₄ [mm]
26,04	25,93	25,67	25,46

Slika 52. Rezultati linearnog gibanja u smjeru x osi s parametrima optimizacije genetskim algoritmom

Tablica 23.Greške rezultata linearnog gibanja u smjeru x osi s parametrima optimizacije
genetskim algoritmom

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,008818	0,008246	0,000478
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,064885	0,043287	0,01267
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,035388	0,028271	0,004822

Slika 53. Rezultati linearnog gibanja u smjeru y osi s parametrima optimizacije genetskim algoritmom

Tablica 24.Greške rezultata linearnog gibanja u smjeru y osi s parametrima optimizacije
genetskim algoritmom

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,059391	0,03648	0,014326
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,008731	0,00843	0,000238
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,032343	0,025366	0,004195

Slika 54. Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s parametrima optimizacije genetskim algoritmom

Tablica 25.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s
	parametrima optimizacije genetskim algoritmom

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,015985	0,00935	0,003899
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,009162	0,006636	0,001569
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,028867	0,016584	0,006995

Slika 55. Rezultati gibanja po kružnici u smjeru kazaljke na satu s parametrima optimizacije genetskim algoritmom

Tablica 26.Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima
optimizacije genetskim algoritmom

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,040076	0,033345	0,004498
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,033503	0,027207	0,004323
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,084825	0,067397	0,010037

Slika 56. Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s parametrima optimizacije genetskim algoritmom

Tablica 27.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s	
parametrima optimizacije genetskim algoritmom		

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,002359	0,002114	0,000176
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001265	0,00107	0,000133
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,074958	0,070177	0,0058900

Slika 57. Rezultati rotacije oko z osi u smjeru kazaljke na satu s parametrima optimizacije genetskim algoritmom
Tablica 28.Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima
optimizacije genetskim algoritmom

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,001001	0,000874	1.128e-4
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001145	0,001095	3,1e-05
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,070842	0,068186	0,001868

3.3.3.5. Ocjena algoritma Particle Swarm

Tablica 29.	Parametri dobiveni Particle Swarm	optimizacijom

<i>a</i> ₁ [mm]	<i>a</i> ₂ [mm]	<i>a</i> ₃ [mm]	<i>a</i> ₄ [mm]
107,9	-116,5	-117,5	108,1
<i>b</i> ₁ [mm]	<i>b</i> ₂ [mm]	<i>b</i> ₃ [mm]	<i>b</i> ₄ [mm]
114,4	111,7	-116,7	-108,5
<i>r</i> ₁ [mm]	<i>r</i> ₂ [mm]	<i>r</i> ₃ [mm]	<i>r</i> ₄ [mm]
26,11	25,13	26,61	25,01

Slika 58. Rezultati linearnog gibanja u smjeru osi x s parametrima Particle Swarm optimizacije

Tablica 30.	Greške rezultata linearnog gibanja u smjeru osi x s parametrima Particle Swarm
	optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,018344	0,014746	0,002729
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,116305	0,097985	0,015883
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,07118	0,056355	0,010799

Slika 59. Rezultati linearnog gibanja u smjeru osi y s parametrima Particle Swarm optimizacije

Tablica 31.	Greške rezultata linearnog gibanja u smjeru osi y s parametrima Particle Swarm
	optimizacije

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,1116	0,053653	0,03716
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,040605	0,031076	0,009564
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,063565	0,030678	0,019993

Slika 60. Rezultati gibanja po kružnici u suprotnom smjeru od kazaljke na satu s parametrima Particle Swarm optimizacije

Tablica 32.	Greške rezultata gibanja po kružnici u suprotnom smjeru od kazaljke na satu s
	parametrima Particle Swarm optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,025777	0,014237	0,006872
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,016868	0,01129	0,003627
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,036373	0,020438	0,009549

Slika 61. Rezultati gibanja po kružnici u smjeru kazaljke na satu s parametrima Particle Swarm optimizacije

Tablica 33.	Greške rezultata gibanja po kružnici u smjeru kazaljke na satu s parametrima
	Particle Swarm optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,049822	0,044597	0,005418
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,04362	0,039899	0,003293
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,110097	0,100875	0,007229

Slika 62. Rezultati rotacije oko z osi u suprotnom smjeru od kazaljke na satu s parametrima Particle Swarm optimizacije

Tablica 34.	Greške rezultata rotacije oko z osi u suprotnom smjeru od kazaljke na satu s
	parametrima Particle Swarm optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$	
0,002552	0,002113	0,000396	
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$	
0,002914	0,002513	0,0003410	
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$	
0,080893	0,077326	0,0031660	

Slika 63. Rezultati rotacije oko z osi u smjeru kazaljke na satu s parametrima Particle Swarm optimizacije

Tablica 35.	Greške rezultata rotacije oko z osi u smjeru kazaljke na satu s parametrima
	Particle Swarm optimizacije

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,003082	0,002575	0,000392
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,002422	0,002143	0,000415
$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,072221	0,068855	0,003348

3.3.3.6. Usporedba metoda

Na slikama su prikazane dobivene trajektorije svake metode tako da se odabrao najlošiji slučaj ponavljanja metode. Ispod svake slike su uspoređene pogreške svake trajektorije te dani iznosi promjena pogrešaka. Predznak "-" označava smanjenje, dok predznak "+" označava povećanje pogreške.

Slika 64. Usporedba rezultata kalibracije za linearno gibanje u smjeru osi x

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_{\chi} [m]$	
Nominalno	0,06323	0,061529	0,002120	
Fmincon	0,013645 (-0,049588)	0,009182 (-0,052347)	0,002706 (+0,000586)	
Levenberg	0,019929	0,018043	0,001436	
- Marquardt	(-0,043304)	(-0,043486)	(-0,000684)	
Genetski	0,008818	0,008246	0,000478	
algoritam	(-0,0544150)	(-0,053283)	(-0,001642)	
Particle	0,018344	0,014746	0,002729	
Swarm	(-0,044889)	(-0,046783)	(-0,000609)	
	$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_{y}[m]$	
Nominalno	0,151524	0,139242	0,015646	
Fmincon	0,04145	0,035158	0,006497	
	(-0,110074)	(-0,104084)	(+0,009149)	
Levenberg	0,055994	0,046887	0,008901	
- Marquardt	(-0,09553)	(-0,092355)	(-0,006745)	
Genetski	0,064885	0,043287	0,01267	
algoritam	(-0,086639)	(-0,095955)	(-0,002976)	
Particle	0,116305	0,097985	0,015883	
Swarm	(-0,035219)	(-0,041257)	(-0,000237)	
	$e_{ heta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{ heta}$ [rad]	
Nominalno	Nominalno 0,098895 (0,014747	
Fmincon	Fmincon 0,028451 (-0,070444) 0,02783 (-0,05297)		0,000585 (-0,014162)	
Levenberg	evenberg 0,037124 0,030704		0,006899	
- Marquardt	Marquardt (-0,061771) (-0,050104		(-0,007848)	
Genetski	0,035388	0,028271	0,004822	
algoritam	(-0,063507)	(-0,052537)	(-0,009925)	
Particle	rticle 0,07118 0,056355		0,010799	
Swarm	varm (-0,027715) (-0,024453)		(-0,003948)	

Tablica 36. Greške rezultata kalibracije za linearno gibanje u smjeru osi x

Slika 65. Usporedba rezultata kalibracije za linearno gibanje u smjeru osi y

	<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_{\chi} [m]$	
Nominalno	minalno 0,233615 0,223026		0,016376	
Fmincon	0,07453	0,054148	0,016407	
	(-0,159085)	(-0,168878)	(+3,01e-05)	
Levenberg	0,075779	0,0361	0,026945	
- Marquardt	(-0,157836)	(-0,18692)	(+0,010569)	
Genetski	0,059391	0,03648	0,014326	
algoritam	(-0,174224)	(-0,186546)	(-0,002050)	
Particle	0,1116	0,053653	0,03716	
Swarm	(-0,122015)	(-0,169373)	(-0,020784)	
	<i>e_{y,max}</i> [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$	
Nominalno	0,053887	0,050721	0,003303	
Fmincon 0,010537		0,009029 0,00107		
(-0,04335)		(-0,041692) (+0,00222		
Levenberg	0,018092	0,015837	0,001502	
- Marquardt	(-0,035795)	(-0,034884)	(-0,001801)	
Genetski	0,008731	0,00843	0,000238	
algoritam	(-0,045156)	(-0,042291)	(-0,003065)	
Particle	0,040605	0,031076	0,009564	
Swarm	(-0,013282)	(-0,019645)	(+0,006261)	
	$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$	
Nominalno	0,122782	0,118598	0,004426	
Fmincon 0,044701		0,032804	0,010146	
(-0,07808)		(-0,085794)	(+0,00572)	
Levenberg	0,034367	0,018872	0,011059	
- Marquardt	(-0,088415)	(-0,099726)	(+0,006633)	
Genetski	0,032343	0,025366	0,004195	
algoritam	(-0,090439)	(-0,093232)	(-0,000231)	
Particle	0,063565	0,030678	3 0,019993	
Swarm	(-0,059217)	(-0,08792)	2) (+0,015567)	

Tablica 37. Greške rezultata kalibracije za linearno gibanje u smjeru osi y

Slika 66. Usporedba rezultata kalibracije za gibanje po kružnici u suprotnom smjeru od kazaljke na satu

38.	Greške rezultata kalibracije za gibanje po kružnici u suprotnom smjeru od
	kazaljke na satu

	<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$	
Nominalno	0,065202	0,059866	0,003078	
Fmincon 0,02027		0,013424	0,00523	
(-0,044932)		(-0,046442)	(+0,002152)	
Levenberg	0,011171	0,009287	0,001688	
- Marquardt	(-0,054031)	(-0,050579)	(-0,00139)	
Genetski	0,015985	0,00935	0,003899	
algoritam	(-0,049217)	(-0,050516)	(+0,000821)	
Particle	0,025777	0,014237	0,006872	
Swarm	(-0,039425)	(-0,045629)	(+0,003794)	
	<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$	
Nominalno	0,043992	0,040622	0,002096	
Fmincon 0,014224		0,008889	0,004178	
(-0,029768)		(-0,031733)	(+0,002082)	
Levenberg	Levenberg 0,01469		0,003629	
- Marquardt	• Marquardt (-0,029302)		(+0,001533)	
Genetski	0,009162	0,006636	0,001569	
algoritam	(-0,03483)	(-0,033986)	(-0,0005270)	
Particle	0,016868	0,01129	0,003627	
Swarm	(-0,027124)	(-0,029332)	(+0,001531)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{\theta} [rad]$	
Nominalno	0,11632	0,108808	0,005477	
Fmincon 0,047266		0,033823	0,010691	
(-0,069054)		(-0,074985)	(+0,005214)	
Levenberg	0,019434	0,013578	0,00472	
- Marquardt	(-0,096886)	(-0,09523)	(-0,000757)	
Genetski	Genetski 0,028867		0,006995	
algoritam	algoritam (-0,087453)		(+0,001518)	
Particle 0,036373		0,020438 0,00954		
Swarm (-0,079947)		(-0,08837) (+0,00407		

Slika 67. Usporedba rezultata kalibracije za gibanje po kružnici u smjeru kazaljke na satu

Diplomski rad

Tablica 39.

9. Greške rezultata kalibracije za gibanje po kružnici u smjeru kazaljke na satu

	$e_{x,max}$ [m]		$\sigma_x [m]$	
Nominalno	0,031225	0,02536	0,004108	
Fmincon	0,050298	0,03989	0,010989	
	(+0,019073)	(+0,01453)	(+0,006881)	
Levenberg	0,039312	0,030473	0,007491	
- Marquardt	(+0,008087)	(+0,005113)	(+0, 003383)	
Genetski	0,040076	0,033345	0,004498	
algoritam	(+0,008851)	(+0,007985)	(+0, 00039)	
Particle	0,049822	0,044597	0,005418	
Swarm	(+0,018597)	(+0,019237)	(+0, 00131)	
	$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_{y}[m]$	
Nominalno 0,036231		0,031872	0,0032080	
Fmincon 0,042266 (+0,006035)		0,0359080 (+0,004036) 0,008622 (+0,00541		
Levenberg	0,030246	0,023462	0,004398	
- Marquardt	(-0,005985)	(-0,00841)	(+0,00119)	
Genetski 0,033503		0,027207	0,004323	
algoritam (-0,002728)		(-0,004665)	(+0, 001115)	
Particle	0,04362	0,039899	0,003293	
Swarm	(+0,007389)	(+0,008027)	(+8,5e-05)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$	
Nominalno 0,064159		0,04768	0,01015	
Fmincon 0,103399		0,088964	0,019248	
(+0,03924)		(+0,04128)	(+0, 009098)	
Levenberg	0,08627	0,069467 0,02211) 0,069467 0,		
- Marquardt	(+0,02211)	02211) (+0,021785) (+0,		
Genetski	0,084825	0,067397 0,0100		
algoritam	(+0,02067)	(+0,01975) (-0,000		
Particle	0,110097	0,100875	007229	
Swarm	(+0,45938)	(+0,053193)	(-0,002921)	

Slika 68. Usporedba rezultata kalibracije za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Tablica 40

40.	Greške rezultata kalibracije za rotaciju oko z osi u suprotnom smjeru od
	kazaljke na satu

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$	
Nominalno	0,00265	0,001841	0,000456	
Fmincon	0,004843	0,004411	0,000445	
	(+0,002193)	(0,00257)	(-1,1e-05)	
Levenberg	0,001913	0,001694	0,000161	
- Marquardt	(-0,000737)	(-0,000147)	(-0,000295)	
Genetski	0,002359	0,002114	0,000176	
algoritam	(-0,000291)	(0,000273)	(-0,00028)	
Particle	0,002552	0,002113	0,000396	
Swarm	(-9,8e-05)	(0,000272)	(-6,0e-05)	
	<i>e_{y,max}</i> [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$	
Nominalno	0,001476	0,001183	0,000228	
Fmincon	0,0027790	0,002633	0,000122	
	(0,001303)	(0,00145)	(-0,000106)	
Levenberg	0,001161	0,000964	0,000214	
- Marquardt	(-0,000315)	(-0,000219)	(-1,4e-05)	
Genetski	0,001265	0,00107	0,000133	
algoritam	(-0,000211)	(-0,000113)	(-9,5e-05)	
Particle	0,002914	0,002513	0,0003410	
Swarm	(0,001438)	(0,00133)	(0,000113)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$	
Nominalno	0,143974	0,140736	0,003427	
Fmincon	0,085311	0,079873	0,003751	
	(-0,058663)	(-0,060863)	(+0,000324)	
Levenberg	0,088568	0,082932 0,0032		
- Marquardt	(-0,055406)	(-0,057804) (-0,0001		
Genetski	0,074958	0,070177 0,00589		
algoritam	(-0,069016)	(-0,070559) (+0,0024		
Particle 0,080893 Swarm (-0,063081)		0,077326 0,003166 (-0,06341) (-0,00026		

Slika 69. Usporedba rezultata kalibracije za rotaciju oko z osi u smjeru kazaljke na satu

Diplomski rad

Tablica 41.

Greške rezultata kalibracije za rotaciju oko z osi u smjeru kazaljke na satu

$e_{x,max}$ [m]		$e_{x,sr}$ [m]	$\sigma_x [m]$	
Nominalno	0,001941	0,001777	0,000113	
Fmincon 0,003695		0,003375	0,000555	
(+0,001754)		(+0,001598)	(+0,000442)	
Levenberg	0,002173	0,00183	0,000295	
- Marquardt	(+0,000232)	(+5,3e-05)	(+0,000182)	
Genetski	0,001001	0,000874	0,000113	
algoritam	(-0,00094)	(-0,000903)	(+1,72e-05)	
Particle	0,003082	0,002575	0,000392	
Swarm	(+0,001141)	(+0,000798)	(+0,000279)	
	$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_{y}[m]$	
Nominalno	0,001493	0,001192	0,0002	
Fmincon 0,0027790		0,002633	0,000122	
(+0,001519)		(+0,001346)	(+0,00017)	
Levenberg	0,001368	0,001134	0,0002	
- Marquardt	(-0,000125)	(-5,78e-05)	(+2e-07)	
Genetski 0,001145		0,001095	3,1e-05	
algoritam (-0,000348)		(-9,7e-05)	(-0,000169)	
Particle 0,002422 Swarm (+0,00092)		0,002143 (+0,000951)	0,000415 (+0,000215)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{\theta} [rad]$	
Nominalno	0,143145	0,13895	0,002828	
Fmincon 0,066604		0,06349	0,002253	
(-0,076541)		(-0,07546)	(-0,000575)	
Levenberg	0,079861	0,075904	0,003117	
- Marquardt	(-0,063284)	(-0,063046)	(+0,000289)	
Genetski	0,070842	0,068186	0,001868	
algoritam	(-0,072303)	(-0,070764)	(-0,00096)	
Particle 0,072221 Swarm (-0,070924)		0,068855 (-0,070095)	0,003348 (+0,00052)	

U nekim slučajevima dolazi do povećanja grešaka, što najviše dolazi do izražaja u gibanju po kružnici u smjeru kazaljke na satu. Optimizacija je dala rješenja za najmanju ukupnu pogrešku svih trajektorija. Samim time greška lokalizacije je manja, iako se može dogoditi da greška za neku trajektoriju veća od inicijalne. To se najbolje uočava ako se promotri ukupno smanjenje greške svake metode. Srednje maksimalne pogreške svake trajektorije se zbrajaju te se dobiva ukupna greška svake metode. Najbolje rezultate dao je genetski algoritam (-64.35%), a najlošije se pokazao drugi stohastički algoritam Particle Swarm (-47.30%).

	$\sum_{s} e_{x,sr}$ [m]	$\sum_{s} e_{y,sr}$ [m]	$\sum_{\substack{s\\ [rad]}} e_{\theta,sr}$	Ukupno	Promjena	Promjena [%]
Nominalno	0,373399	0,264832	0,635582	1,273813	-	-
Fmincon	0,12443	0,094155	0,326784	0,545369	-0,728444	-57,19 %
Levenberg - Marquardt	0,097433	0,097075	0,291457	0,485965	-0,787848	-61,85 %
Genetski algoritam	0,090409	0,087725	0,275981	0,454115	-0,819698	-64,35 %
Particle Swarm	0,131921	0,184906	0,354527	0,671354	-0,602459	-47,30 %

 Tablica 42.
 Ukupne smanjenje grešaka dobiveno kalibracijom odometrije

4. PRIMJENA PROŠIRENOG KALMANOVOG FILTRA

4.1. Prošireni Kalmanov filtar

U praksi je čest slučaj provođenje fuzije mjerenja više izvora odometrije [6] [7] [12] [13][14]. Snimanje različitih mjerenja i definiranje kovarijanci $\mathbf{P_n}$, odnosno šuma \mathbf{Q} i nesigurnosti točnosti svakog izvora odometrije \mathbf{R} rezultira povećanom točnošću. Promatrani model sustava je direktna kinematika robota koja nelinearno ovisi o varijablama stanja. Iz toga razloga se koristi prošireni Kalmanov filtar (engl. "*Extended Kalman Filter, EKF*") [43]. Izlaz sustava je definiran kao \mathbf{y}_n koji prati varijable stanja. Za provedbu proširenog Kalmanovog filtra potrebno je linearizirati sustav oko radne točke (4.2)(4.3). Osim linearizacije u pravilu nema razlika između linearnog i nelinearnog Kalmanovog filtra. Algoritam se izvodi u dva koraka. Prvi korak je početno predviđanje varijabli stanja $\hat{\mathbf{x}}_{n+1}$ (4.1) i simuliranje nesigurnosti modela $\hat{\mathbf{P}}_{n+1}$ (4.5).

$$\hat{\mathbf{x}}_{n+1} = \mathbf{f}(\mathbf{x}_n) = \begin{bmatrix} \hat{x}_{n+1} \\ \hat{y}_{n+1} \\ \hat{\theta}_{n+1} \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \\ \theta_n \end{bmatrix} + \begin{bmatrix} v_{x,n} \\ v_{y,n} \\ \omega_n \end{bmatrix} dt$$
(4.1)

$$\mathbf{y}_{n} = \mathbf{h}(\mathbf{x}_{n}) = \begin{bmatrix} x_{n} \\ y_{n} \\ \theta_{n} \end{bmatrix}$$
(4.2)

$$\mathbf{F} = \frac{\partial \mathbf{f}(\mathbf{x}_{n})}{\partial \mathbf{x}_{n}}$$

$$\mathbf{H} = \frac{\partial \mathbf{h}(\mathbf{x}_{n})}{\partial \mathbf{x}_{n}}$$

(4.4)

(4.3)

$$\widehat{\mathbf{P}}_{n+1} = \mathbf{F} \, \mathbf{P}_n \, \mathbf{F}^T + \mathbf{Q} \tag{4.5}$$

Zatim se iz predikcije nesigurnosti modela $\widehat{\mathbf{P}}_{n+1}$ i nesigurnosti dodatnih senzora \mathbf{R}_n dobiva Kalmanovo pojačanje $\mathbf{K}_{\mathbf{g}}$ (4.6). Na temelju mjerenja dodatnih senzora \mathbf{Z} radi se korekcija početne predikcije varijabli stanja (4.7) te se također ispravlja vrijednost nesigurnosti modela (4.8). Ovaj postupak se ponavlja tijekom cijelog rada robota.

$$\mathbf{K}_{\mathbf{g}} = \frac{\mathbf{P}_{\mathbf{n}+1}\mathbf{H}^{T}}{\mathbf{H}\ \hat{\mathbf{P}}_{\mathbf{n}+1}\mathbf{H}^{T} + \mathbf{R}_{\mathbf{n}}}$$

$$\mathbf{x}_{\mathbf{n}+1} = \hat{\mathbf{x}}_{\mathbf{n}+1} + \mathbf{K}_{\mathbf{g}}(\mathbf{Z} - \mathbf{h}(\mathbf{x}_{\mathbf{n}}))$$

$$\mathbf{P}_{\mathbf{n}+1} = (\mathbf{I} - \mathbf{K}_{\mathbf{g}}\mathbf{H})\widehat{\mathbf{P}}_{\mathbf{n}+1}(\mathbf{I} - \mathbf{K}_{\mathbf{g}}\mathbf{H})^{T} + \mathbf{K}_{\mathbf{g}}\mathbf{R}_{\mathbf{n}}\mathbf{K}_{\mathbf{g}}^{T}$$

$$(4.6)$$

$$(4.7)$$

4.2. Dodatni senzori

Za implementaciju Kalmanov filtra su se odabrala dva dodatna senzora. Prvi senzor je kamera Intel RealSense T265 koja je predviđena za autonomno praćenje. Teži samo 55g, malih je dimenzija i zahtjeva malu količinu električne snage. Osim snažne vizijski - procesorske jedinice Intel Movidius Myriad 2 VPU, opremljena je s dodatnom inercijalnom mjernom jedinicom. Slike vizijskih senzora su unutar kamere fuzirane s internim IMU senzorom. Prikupljeni IMU podaci šalju se VPU jedinici unutar koje se izvršava SLAM algoritam za praćenje i mapiranje prostora. Izlaz algoritma je vizijsko – inercijalna odometrija. Također postoji opcija da se odometrija kotača šalje kao ulaz u kameru te njen procesor obavlja sav proces fuzije mjerenja. Uzevši sve u obzir, RealSense kamera se nameće kao logičan izbor za dodatni izvor odometrije mobilnog robota. Za rad kamere na Raspberry PI-u je potrebno instalirati driver [39], a za rad u ROS-u se koristi Intel-ov paket [38].

-T

Drugi senzor je popularna i dobro testirana inercijalna mjerna jedinica Adafruit MPU6050 [41]. Senzor prati šest osi, odnosno daje informacije svih kutnih brzina i akceleracija u prostoru. Spojen je na Raspberry Pi putem I2C komunikacije. Za rad IMU jedinice koristio se ROS paket napisan od strane Brazilskog instituta za robotiku [37]. Za fiksiranje kamere i IMU jedinice na robota su se 3d printali nosači na Prusa i3 MK3 printeru [Slika 71][Slika 72] [Slika 74][Slika 75].

Slika 70. Intel RealSense T265 [42]

Slika 71. 3d model nosača kamere

Slika 72. Kamera fiksirana na robotu

Slika 73. Adafruit MPU6050 IMU senzor [41]

Slika 74. 3D model nosača IMU jedinice

Slika 75. IMU jedinica fiksirana na robotu i spojena I2C komunikacijom

4.3. Primjena i rezultati

Radi jednostavnosti i dobro optimiranog algoritma koristilo se gotovo rješenje za Kalmanov filtar u ROS-u. Rješenje pripada paketu "*Robot Localization Package*" [40] koje provodi fuziju neovisno o modelu sustava. Paket zahtjeva samo kovarijance , odnosno nesigurnosti pojedinog mjerenja i kovarijance šuma za svaku varijablu stanja. Prema rezultatima kalibracije, fuziju se će se primjeniti na najbolju i najlošiju metodu te za inicijalno stanje robota.

4.3.1. Rezultati fuzije s inicijalnim parametrima

Slika 76. Rezultati fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi x

Tablica 43.Greške rezultata fuzije s inicijalnim parametrima za linearno gibanje u smjeru
osi x

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,073923	0,073012	0,00063
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,030141	0,013552	0,01111
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,012221	0,008399	0,002486

Slika 77. Rezultati fuzije s inicijalnim parametrima za linearno gibanje u smjeru osi y

Diplomski rad

Tablica 44.Greške rezultata fuzije s inicijalnim parametrima za linearno gibanje u smjeru
osi y

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,033984	0,031522	0,001669
<i>e_{y,max}</i> [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,076253	0,073872	0,001664
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,013745	0,012244	0,001265

Slika 78. Rezultati fuzije s inicijalnim parametrima za gibanje po kružnici u suprotnom smjeru od kazaljke na satu

Tablica 45.	Greške rezultata fuzije s inicijalnim parametrima za gibanje po kružnici u
	suprotnom smjeru od kazalike na satu

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,026792	0,022691	0,004101
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,028122	0,026178	0,002289
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,056715	0,038393	0,010514

Slika 79. Rezultati fuzije s inicijalnim parametrima za gibanje po kružnici u smjeru kazaljke na satu

Tablica 46.Greške rezultata fuzije s inicijalnim parametrima za gibanje po kružnici u
smjeru kazaljke na satu

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,025978	0,020433	0,003851
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,040519	0,029945	0,008779
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,047035	0,036757	0,007866

Slika 80. Rezultati fuzije s inicijalnim parametrima za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Tablica 47.	Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u
	suprotnom smjeru od kazaljke na satu

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,0057520	0,005217	0,000454
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,0031	0,00244	0,000493
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,056504	0,037287	0,013705

Slika 81. Rezultati fuzije s inicijalnim parametrima za rotaciju oko z osi u smjeru kazaljke na satu

Tablica 48.Greške rezultata fuzije s inicijalnim parametrima za rotaciju oko z osi u smjeru
kazaljke na satu

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,0061730	0,005745	0,000378
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001704	0,001535	0,000159
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,060003	0,0431	0,013548

4.3.2. Rezultati fuzije s parametrima Particle Swarm optimizacije

Slika 82. Rezultati fuzije s parametrima Particle Swarm optimizacije za linearno gibanje u smjeru osi x

Diplomski rad

Tablica 49.Greške rezultata fuzije s parametrima Particle Swarm optimizacije za linearno
gibanje u smjeru osi x

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,037102	0,03126	0,004527
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,037553	0,021297	0,012547
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,016347	0,009927	0,003983

Slika 83. Rezultati fuzije s parametrima Particle Swarm optimizacije za linearno gibanje u smjeru osi x

Tablica 50.Greške rezultata fuzije s parametrima Particle Swarm optimizacije za linearno
gibanje u smjeru osi x

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,019469	0,010105	0,006169
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,03728	0,033678	0,003674
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,007624	0,004228	0,001988

Slika 84. Rezultati fuzije s parametrima Particle Swarm optimizacije za gibanje po kružnici u suprotnom smjeru od kazaljke na satu

Tablica 51.	Greške rezultata fuzije s parametrima Particle Swarm optimizacije za gibanje po
	kružnici u suprotnom smjeru od kazaljke na satu

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,040077	0,018758	0,013468
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,036494	0,020088	0,010281
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,058141	0,025174	0,022315

Slika 85. Rezultati fuzije s parametrima Particle Swarm optimizacije za gibanje po kružnici u smjeru kazaljke na satu

Diplomski rad

Tablica 52.Greške rezultata fuzije s parametrima Particle Swarm optimizacije za gibanje po
kružnici u smjeru kazaljke na satu

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,038573	0,028911	0,006385
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,022448	0,014537	0,005245
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,054974	0,038225	0,011084

Slika 86. Rezultati fuzije s parametrima Particle Swarm optimizacije za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Jakov Vitko Tablica 53.

Greške rezultata fuzije s parametrima Particle Swarm optimizacije za rotaciju		
oko z osi u suprotnom smjeru od kazaljke na satu		

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,001963	0,001671	0,000252
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,00267	0,002155	0,000548
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,088401	0,052848	0,025014

Slika 87. Rezultati fuzije s parametrima Particle Swarm optimizacije za rotaciju oko z osi u smjeru kazaljke na satu
Tablica 54.Greške rezultata fuzije s parametrima Particle Swarm optimizacije za rotacijuoko z osi u smjeru kazaljke na satu

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,002165	0,00206	8,9e-05
<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,001906	0,001811	7,9e-05
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,051198	0,034222	0,010468

4.3.3. Rezultati fuzije s parametrima optimizacije genetskim algoritmom

Slika 88. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za linearno gibanje u smjeru osi x

Tablica 55.Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
linearno gibanje u smjeru osi x

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,019361	0,016506	0,001964
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,024525	0,016471	0,007038
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,011713	0,007937	0,002826

Slika 89. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za linearno gibanje u smjeru osi y

Tablica 56.Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom zalinearno gibanje u smjeru osi y

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,027507	0,024399	0,0022740
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,01838	0,016357	0,002326
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,013254	0,011228	0,001545

Slika 90. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za gibanje po kružnici u suprotnom smjeru od kazaljke na satu

Diplomski rad

Tablica 57.Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za
gibanje po kružnici u suprotnom smjeru od kazaljke na satu

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,031867	0,015738	0,009072
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
0,039981	0,015265	0,013901
$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,0880	0,037231	0,028897

Slika 91. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za gibanje po kružnici u smjeru kazaljke na satu

Diplomski rad

Tablica 58. Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za gibanje po kružnici u smjeru kazaljke na satu

$e_{x,max}$ [m] $e_{x,sr}$ [m]		$\sigma_x [m]$	
0,020683	0,014376	0,004462	
$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$	
0,017594	0,00864	0,005299	
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{\theta} [rad]$	
0,0388660	0,021438	0,009848	

Slika 92. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Tablica 59.

Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za	
rotaciju oko z osi u suprotnom smjeru od kazaljke na satu	

<i>e_{x,max}</i> [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,002025	0,001761	0,000199
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,001869	0,001293	0,000382
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,071455	0,035466	0,023607

Slika 93. Rezultati fuzije s parametrima optimizacije genetskim algoritmom za rotaciju oko z osi u smjeru kazaljke na satu

Diplomski rad

$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
0,000821	0,000657	0,000145
$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$
0,001347	0,001157	0,000147
$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
0,049191	0,040692	0,009704

Greške rezultata fuzije s parametrima optimizacije genetskim algoritmom za rotaciju oko z osi u smjeru kazaljke na satu

4.3.4. Usporedba rezultata primjene Kalmanovog filtra

U ovom dijelu će se usporediti rezultati primjene filtra s prethodno kalibriranim parametrima, rezultati filtra s inicijalnim parametrima, samo kalibrirani odzivi i nominalni odziv. Svi ti odzivi će se prikazivati grafički jednim ponavljanjem. Uspoređivat će se maksimalne srednje greške, kao i kod kalibracije. Poslije toga bit će dana tablica ukupnog smanjenja grešaka. Na ovaj način vidjet će se ima li prethodna kalibracija utjecaj na točnost, odnosno daje li fuzija s kalibriranim parametrima bolje rezultate.

Slika 94. Usporedba rezultata fuzije za linearno gibanje u smjeru osi x

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
Nominalno	0,06323	0,061529	0,002120
Particle	0,018344	0,014746	0,002729
Swarm	(-0,044889)	(-0,046783)	(-0,000609)
Genetski	0,008818	0,008246	0,000478
algoritam	(-0,0544150)	(-0,053283)	(-0,001642)
NOM+EKF	0,073923	0,073012	0,00063
	(+0,01069)	(+0,011483)	(-0,00149)
PS + EKF	0,037102	0,03126	0,004527
	(-0,026131)	(-0,030269)	(+0,002407)
GA + EKF	0,051198	0,034222	0,010468
	(-0,043872)	(-0,045023)	(-0,000156)
	$e_{y,max}$ [m]	<i>e_{y,sr}</i> [m]	$\sigma_{y}[m]$
Nominalno	0,151524	0,139242	0,015646
Particle	0,116305	0,097985	0,015883
Swarm	(-0,035219)	(-0,041257)	(-0,000237)
Genetski	0,064885	0,043287	0,01267
algoritam	(-0,086639)	(-0,095955)	(-0,002976)
NOM+EKF	0,030141	0,013552	0,01111
	(-0,121383)	(-0,12569)	(-0,004536)
PS + EKF	0,037553	0,021297	0,012547
	(-0,113971)	(-0,117945)	(-0,003099)
GA + EKF	0,024525	0,016471	0,007038
	(-0,126999)	(-0,122771)	(-0,008608)
	$e_{ heta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
Nominalno	0,098895	0,080808	0,014747
Particle	0, 063565	0, 030678	0, 019993
Swarm	(-0, 059217)	(-0, 08792)	(+0, 015567)
Genetski	0,07118	0,056355	0,010799
algoritam	(-0,027715)	(-0,024453)	(-0,003948)
NOM+EKF	0,012221	0,008399	0,002486
	(-0,086674)	(-0,072409)	(-0,012261)
PS + EKF	0,016347	0,009927	0,003983
	(-0,082548)	(-0,070881)	(-0,010764)
GA + EKF	0,011713	0,007937	0,002826
	(-0,087182)	(-0,072871)	(-0,011921)

Tablica 61. Greške rezultata fuzije za linearno gibanje u smjeru osi x

Fakultet strojarstva i brodogradnje

Slika 95. Usporedba rezultata fuzije za linearno gibanje u smjeru osi y

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
Nominalno	0, 233615	0, 223026	0, 016376
Particle	0, 1116	0, 053653	0, 03716
Swarm	(-0, 122015)	(-0, 169373)	(-0, 020784)
Genetski	0, 059391	0, 03648	0, 014326
algoritam	(-0, 174224)	(-0, 186546)	(-0, 002050)
NOM+EKF	0,033984	0,031522	0,001669
	(-0,199631)	(-0,191504)	(-0,014707)
PS + EKF	0,019469	0,010105	0,006169
	(-0,214146)	(-0,212921)	(-0,010207)
GA + EKF	0,027507	0,024399	0,0022740
	(-0,206108)	(-0,198627)	(-0,014102)
	$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_{y}[m]$
Nominalno	0, 053887	0, 050721	0, 003303
Particle	0, 040605	0, 031076	0, 009564
Swarm	(-0, 013282)	(-0, 019645)	(+0, 006261)
Genetski	0, 008731	0, 00843	0,000238
algoritam	(-0, 045156)	(-0, 042291)	(-0,003065)
NOM+EKF	0,076253	0,073872	0,001664
	(+0,022366)	(+0,023151)	(-0,001639)
PS + EKF	0,03728	0,033678	0,003674
	(-0,016607)	(-0,017043)	(+0,000371)
GA + EKF	0,01838	0,016357	0,002326
	(-0,035505)	(-0,034364)	(-0,000977)
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$
Nominalno	0, 122782	0, 118598	0,004426
Particle	0, 063565	0, 030678	0, 019993
Swarm	(-0, 059217)	(-0, 08792)	(+0, 015567)
Genetski	0, 032343	0, 025366	0, 004195
algoritam	(-0, 090439)	(-0, 093232)	(-0, 000231)
NOM+EKF	0,013745	0,012244	0,001265
	(-0,109037)	(-0,106354)	(-0,003161)
PS + EKF	0,007624	0,004228	0,001988
	(-0,115158)	(-0,11437)	(-0,002438)
GA + EKF	0,013254	0,011228	0,001545
	(-0,109528)	(-0,10737)	(-0,002881)

Tablica 62. Greške rezultata fuzije za linearno gibanje u smjeru osi y

Slika 96. Usporedba rezultata fuzije za gibanje po kružnici u suprotnom smjeru od kazaljke na satu

lica 63.	Greške rezultata fuzije za gibanje po kružnici u suprotnom smjeru od kazaljke
	na satu

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$
Nominalno	0,065202	0,059866	0,003078
Particle	0, 025777	0, 014237	0,006872
Swarm	(-0, 039425)	(-0, 045629)	(+0,003794)
Genetski	0, 015985	0, 00935	0,003899
algoritam	(-0, 049217)	(-0, 050516)	(+0,000821)
NOM+EKF	0,026792	0,022691	0,004101
	(-0,03841)	(-0,037175)	(+0,001023)
PS + EKF	0,040077	0,018758	0,013468
	(-0,025125)	(-0,041108)	(0,01039)
GA + EKF	0,031867	0,015738	0,009072
	(-0,033335)	(-0,044128)	(+0,005994)
	<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$
Nominalno	0,043992	0,040622	0,002096
Particle	0, 016868	0, 01129	0,003627
Swarm	(-0, 027124)	(-0, 029332)	(+0,001531)
Genetski	0,009162	0,006636	0, 001569
algoritam	(-0,03483)	(-0,033986)	(-0, 0005270)
NOM+EKF	0,028122	0,026178	0,002289
	(-0,01587)	(-0,014444)	(+0,000193)
PS + EKF	0,036494	0,020088	0,010281
	(-0,007498)	(-0,020534)	(+0,008185)
GA + EKF	0,039981	0,015265	0,013901
	(-0,004011)	(-0,025357)	(+0,0118050)
	$e_{\theta,max}$ [rad]	$e_{ heta,sr}$ [rad]	$\sigma_{\theta} [rad]$
Nominalno	0,11632	0,108808	0,005477
Particle	0, 036373	0, 020438	0,009549
Swarm	(-0, 079947)	(-0, 08837)	(+0,004072)
Genetski	0, 028867	0, 016584	0,006995
algoritam	(-0, 087453)	(-0, 092224)	(+0,001518)
NOM+EKF	0,056715	0,038393	0,010514
	(-0,059605)	(-0,070415)	(0,005037)
PS + EKF	0,058141	0,025174	0,022315
	(-0,058179)	(-0,083634)	(+0,016838)
GA + EKF	0,0880	0,037231	0,028897
	(-0,02832)	(-0,071577)	(0,02342)

Slika 97. Usporedba rezultata fuzije za gibanje po kružnici u smjeru kazaljke na satu

Diplomski rad

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$	
Nominalno	0,031225	0,02536	0,004108	
Particle	0,049822	0,044597	0,005418	
Swarm	(+0,018597)	(+0,019237)	(+0, 00131)	
Genetski	0, 059391	0, 03648	0, 014326	
algoritam	(-0, 174224)	(-0, 186546)	(-0, 002050)	
NOM+EKF	0,025978	0,020433	0,003851	
	(-0,005247)	(-0,004927)	(-0,000257)	
PS + EKF	0,038573	0,028911	0,006385	
	(+0,007348)	(+0,003551)	(+0,002277)	
GA + EKF	0,020683	0,014376	0,004462	
	(-0,010542)	(-0,010984)	(+0,000354)	
	$e_{y,max}$ [m]	$e_{y,sr}$ [m]	$\sigma_y [m]$	
Nominalno	0,036231	0,031872	0,0032080	
Particle	0,04362	0,039899	0,003293	
Swarm	(+0,007389)	(+0,008027)	(+8,5e-05)	
Genetski	0,033503	0,027207	0,004323	
algoritam	(-0,002728)	(-0,004665)	(+0, 001115	
NOM+EKF	0,040519	0,029945	0,008779	
	(+0,004288)	(-0,001927)	(+0,005571)	
PS + EKF	0,022448	0,014537	0,005245	
	(-0,013783)	(-0,017335)	(+0,002037)	
GA + EKF	0,017594	0,00864	0,005299	
	(-0,018637)	(-0,023232)	(0,002091)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$	
Nominalno	0,064159	0,04768	0,01015	
Particle	0,110097	0,100875	007229	
Swarm	(+0,45938)	(+0,053193)	(-0,002921)	
Genetski	0,084825	0,067397	0,010037	
algoritam	(+0,02067)	(+0,01975)	(-0, 000113)	
NOM+EKF	0,047035	0,036757	0,007866	
	(-0,017124)	(-0,010925)	(-0,002284)	
PS + EKF	0,054974	0,038225	0,011084	
	(-0,009185)	(-0,009457)	(+0,000934)	
GA + EKF	0,0388660 (-0,025293)	0,021438 0,009848 (-0,026244) (-0,000302		

 Tablica 64.
 Greške rezultata fuzije za gibanje po kružnici u smjeru kazaljke na satu

Fakultet strojarstva i brodogradnje

Slika 98. Usporedba rezultata fuzije za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

Tablica 65.

a 65. Greške rezultata fuzije za rotaciju oko z osi u suprotnom smjeru od kazaljke na satu

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$	
Nominalno	0,00265	0,001841	0,000456	
Particle	0,002552	0,002113	0,000396	
Swarm	(-9,8e-05)	(0,000272)	(-6,0e-05)	
Genetski	0,002359	0,002114	0,000176	
algoritam	(-0,000291)	(0,000273)	(-0,00028)	
NOM+EKF	0,0057520	0,005217	0,000454	
	(+0,003102)	(+0,003376)	(-2e-6)	
PS + EKF	0,001963	0,001671	0,000252	
	(-0,000687)	(-0,00017)	(-0,000204)	
GA + EKF	0,002025	0,001761	0,000199	
	(-0,000625)	(-0,00008)	(-0,000257)	
	<i>e_{y,max}</i> [m]	$e_{y,sr}$ [m]	$\sigma_{y}[m]$	
Nominalno	0,001476	0,001183	0,000228	
Particle	0,002914	0,002513	0,0003410	
Swarm	(0,001438)	(0,00133)	(0,000113)	
Genetski	0,001265	0,00107	0,000133	
algoritam	(-0,000211)	(-0,000113)	(-9,5e-05)	
NOM+EKF	0,0031	0,00244	0,000493	
	(+0,001624)	(+0,001257)	(+0,000265)	
PS + EKF	0,00267	0,002155	0,000548	
	(+0,001194)	(+0,000972)	(+0,00032)	
GA + EKF	0,001869	0,001293	0,000382	
	(+0,000393)	(+0,00011)	(0,000154)	
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta}$ [rad]	
Nominalno	0,143974	0,140736	0,003427	
Particle	0,080893	0,077326	0,003166	
Swarm	(-0,063081)	(-0,06341)	(-0,000261)	
Genetski	0,074958	0,070177	0,0058900	
algoritam	(-0,069016)	(-0,070559)	(+0,002463)	
NOM+EKF	0,056504	0,037287	0,013705	
	(-0,08747)	(-0,103449)	(+0,010278)	
PS + EKF	0,088401	0,052848	0,025014	
	(-0,055573)	(-0,087888)	(0,021587)	
GA + EKF	0,071455	0,035466	0,023607	
	(-0,072519)	(-0,10527)	(+0,02018)	

Slika 99. Usporedba rezultata fuzije za rotaciju oko z osi u smjeru kazaljke na satu

Tablica 66.

Greške rezultata fuzije za rotaciju oko z osi u smjeru kazaljke na satu

	$e_{x,max}$ [m]	$e_{x,sr}$ [m]	$\sigma_x [m]$		
Nominalno	0,001941	0,001777	0,000113		
Particle	0,003082	0,002575	0,000392		
Swarm	(+0,001141)	(+0,000798)	(+0,000279)		
Genetski	0,001001	0,000874	0,000113		
algoritam	(-0,00094)	(-0,000903)	(+1,72e-05)		
NOM+EKF	0,0061730	0,005745	0,000378		
	(+0,004232)	(+0,003968)	(+0,000265)		
PS + EKF	0,002165	0,00206	8,9e-05		
	(+0,000224)	(+0,000283)	(-0,000024)		
GA + EKF	0,000821	0,000657	0,000145		
	(-0,00112)	(-0,00112)	(+0,000032)		
	<i>e_{y,max}</i> [m]	<i>e_{y,sr}</i> [m]	$\sigma_y [m]$		
Nominalno	0,001493	0,001192	0,0002		
Particle	0,002422	0,002143	0,000415		
Swarm	(+0,00092)	(+0,000951)	(+0,000215)		
Genetski	0,001145	0,001095	3,1e-05		
algoritam	(-0,000348)	(-9,7e-05)	(-0,000169)		
NOM+EKF	0,001704	0,001535	0,000159		
	(+0,000211)	(+0,000343)	(-0,000041)		
PS + EKF	0,001906	0,001811	7,9e-05		
	(+0,000413)	(+0,000619)	(-0,000121)		
GA + EKF	0,001347	0,001157	0,000147		
	(-0,000146)	(-3,5e-5)	(-5,3e-5)		
	$e_{\theta,max}$ [rad]	$e_{\theta,sr}$ [rad]	$\sigma_{ heta} \ [rad]$		
Nominalno	0,143145	0,13895	0,002828		
Particle	0,072221	0,068855	0,003348		
Swarm	(-0,070924)	(-0,070095)	(+0,00052)		
Genetski	0,070842	0,068186	0,001868		
algoritam	(-0,072303)	(-0,070764)	(-0,00096)		
NOM+EKF	0,060003	0,0431	0,013548		
	(-0,083142)	(-0,09585)	(+0,01072)		
PS + EKF	0,051198	0,034222	0,010468		
	(-0,091947)	(-0,104728)	(+0,00764)		
GA + EKF	0,049191	0,040692	0,009704		
	(-0,093954)	(-0,098258)	(+0,006876)		

	$\sum_{s} e_{x,sr}$ [m]	$\sum_{s} e_{y,sr}$ [m]	$\sum_{\substack{s \\ [rad]}} e_{\theta, sr}$	Ukupno	Promjena	Promjena [%]
Nominalno	0,373399	0,264832	0,635582	1,273813	-	-
Genetski algoritam	0,090409	0,087725	0,275981	0,454115	-0,819698	-64,35 %
Particle Swarm	0,131921	0,184906	0,354527	0,671354	-0,602459	-47,30 %
NOM + EKF	0,15862	0,147522	0,17618	0,482322	-0,79149	-62,14 %
GA + EKF	0,073437	0,059183	0,153992	0,286612	-0,987201	-77,50 %
PS + EKF	0,073437	0,093566 0	0,164624	0,350955	-0,922858	-72,45 %

Tablica 67. Ukupno smanjenje pogreške dobiveno primjenom Kalmanovog filtra

5. ZAKLJUČAK

Cilj ovog rada bio je povećati točnost lokalizacije mobilnog robota s četiri nezavisno zakretna i četiri nezavisno pogonjena kotača. Estimacija pozicije i orijentacije proizlazi iz direktne kinematike robota koja je nelinearno ovisna o radijusima kotača i poziciji kotača u odnosu na težište robota. Odstupanje parametara od nominalnih unose pogrešku estimacije koja kumulativno raste. Istraživanje postojećih metoda pokazalo je nedostatak analitičkih kalibracija za zadanu strukturu. Iz toga razloga se krenulo putem numeričke optimizacije koja se pokazala djelotvornom [19][20] [21] [22].

Ovaj rad pokazao je kalibraciju, odnosno optimizaciju parametara direktne kinematike koristeći četiri metode. Koristile su se dvije stohastičke i dvije gradijentne metode. Traženje parametara uvjetovala je funkcija cilja sastavljena od sume kvadrata pogrešaka varijabla stanja. Ulazni podaci za ocjenu točnosti bilo je šest trajektorija odabrane tako da pobude sve izvore pogrešaka. Rezultati kalibracije pokazali su smanjenje maksimalnih grešaka od gotovo 65 %.

U zadnjem poglavlju rada pokazala se fuzija senzora proširenim Kalmanovim filtrom. Dodatni senzori bili su prateća kamera i inercijalna mjerna jedinica. Kalmanov filtar primijenio se na nominalnim parametrima, te najboljem i najlošijem skupu parametara prema rezultatima kalibracije. Rezultati Kalmanovog filtriranja svakako su pokazali poboljšanje lokalizacije. Greška se maksimalno smanjila na 77.5 % i to za parametre koji su dali najbolja rješenja pri kalibraciji. Iz toga se može zaključiti da kalibrirani parametri daju pouzdanije odometrijsko estimiranje te u tom slučaju Kalmanovo filtriranje daje bolje rezultate. Mora naglasiti da su neke varijable stanja narasle u odnosu na kalibrirane odzive. To bi značilo da podešenje nesigurnosti senzora i šuma nije idealno te da se točnost lokalizacije zasigurno može dodatno povećati. Na kraju, potrebna je validacija povećanja točnosti kalibracijom parametara direktne kinematike i primjenom Kalmanovog filtra u realnim praktičnim uvjetima. Isto tako za primjenu u realnima uvjetima potrebno je razraditi upravljački program kojim će se dinamički suzbiti utjecaj posmaka stanja IMU senzora i kamere.

LITERATURA

- Lee, M.H. and Li, T.H.S., 2015. Kinematics, dynamics and control design of 4WIS4WID mobile robots. The Journal of Engineering, 2015(1), pp.6-16.
- [2] Borenstein, J. and Feng, L., 1995, December. UMBmark: A benchmark test for measuring odometry errors in mobile robots. In Mobile Robots X (Vol. 2591, pp. 113-124). SPIE.
- [3] Jung, C. and Chung, W., 2012, May. Accurate calibration of two wheel differential mobile robots by using experimental heading errors. In 2012 IEEE International Conference on Robotics and Automation (pp. 4533-4538). IEEE.
- [4] Lee, K., Jung, C. and Chung, W., 2011. Accurate calibration of kinematic parameters for two wheel differential mobile robots. Journal of mechanical science and technology, 25, pp.1603-1611.
- [5] Abbas, T., Arif, M. and Ahmed, W., 2006, October. Measurement and correction of systematic odometry errors caused by kinematics imperfections in mobile robots. In 2006 SICE-ICASE International Joint Conference (pp. 2073-2078). IEEE.
- [6] HoseinNezhad, R., Moshiri, B. and Reza Asharif, M., 2003. Improved pose estimation for mobile robots by fusion of odometry data and environment map. Journal of Intelligent and Robotic Systems, 36, pp.89-108.
- [7] Censi, A., Franchi, A., Marchionni, L. and Oriolo, G., 2013. Simultaneous calibration of odometry and sensor parameters for mobile robots. IEEE Transactions on Robotics, 29(2), pp.475-492.
- [8] Lee, K., Chung, W. and Yoo, K., 2010. Kinematic parameter calibration of a car-like mobile robot to improve odometry accuracy. Mechatronics, 20(5), pp.582-595.
- [9] Lee, K. and Chung, W., 2008, May. Calibration of kinematic parameters of a car-like mobile robot to improve odometry accuracy. In 2008 IEEE International Conference on Robotics and Automation (pp. 2546-2551). IEEE.
- [10] Jung, D., Seong, J., Moon, C.B., Jin, J. and Chung, W., 2016. Accurate calibration of systematic errors for car-like mobile robots using experimental orientation errors. International Journal of Precision Engineering and Manufacturing, 17, pp.1113-1119.
- [11] Galasso, F., Rizzini, D.L., Oleari, F. and Caselli, S., 2019. Efficient calibration of four wheel industrial AGVs. Robotics and Computer-Integrated Manufacturing, 57, pp.116-128

- [12] McKerrow, P.J. and Ratner, D., 2002, September. Calibrating a 4-wheel mobile robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (Vol. 1, pp. 859-864). IEEE.
- [13] Bento, L.C., Nunes, U., Moita, F. and Surrecio, A., 2005, September. Sensor fusion for precise autonomous vehicle navigation in outdoor semi-structured environments. In Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005. (pp. 245-250). IEEE.
- [14] Surrécio, A., Nunes, U. and Araújo, R., 2005, June. Fusion of odometry with magnetic sensors using kalman filters and augmented system models for mobile robot navigation.
 In Proceedings of the IEEE International Conference on Industrial Electronics, Dubrovnik, Croacia.
- [15] Bonnifait, P., Bouron, P., Crubille, P. and Meizel, D., 2001, May. Data fusion of four ABS sensors and GPS for an enhanced localization of car-like vehicles. In Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 2, pp. 1597-1602). IEEE.
- [16] Han, K.L., Kim, H. and Lee, J.S., 2010, October. The sources of position errors of omnidirectional mobile robot with Mecanum wheel. In 2010 IEEE International Conference on Systems, Man and Cybernetics (pp. 581-586). IEEE.
- [17] Maddahi, Y., Maddahi, A. and Sepehri, N., 2013. Calibration of omnidirectional wheeled mobile robots: method and experiments. Robotica, 31(6), pp.969-980.
- [18] Lin, P., Liu, D., Yang, D., Zou, Q., Du, Y. and Cong, M., 2019, August. Calibration for odometry of omnidirectional mobile robots based on kinematic correction. In 2019 14th International conference on computer science & education (ICCSE) (pp. 139-144). IEEE.
- [19] Palacín, J., Rubies, E. and Clotet, E., 2022. Systematic Odometry Error Evaluation and Correction in a Human-Sized Three-Wheeled Omnidirectional Mobile Robot Using Flower-Shaped Calibration Trajectories. Applied Sciences, 12(5), p.2606.
- [20] Palacín, J., Rubies, E., Bitrià, R. and Clotet, E., 2023. Non-Parametric Calibration of the Inverse Kinematic Matrix of a Three-Wheeled Omnidirectional Mobile Robot Based on Genetic Algorithms. Applied Sciences, 13(2), p.1053.
- [21] Savaee, E. and Rahmani Hanzaki, A., 2021. A new algorithm for calibration of an omnidirectional wheeled mobile robot based on effective kinematic parameters estimation. Journal of Intelligent & Robotic Systems, 101, pp.1-11.

- [22] Finderle, L. (2021). 'Izrada i umjeravanje kinematičkog modela svesmjerne platforme robota Pepper', Diplomski rad, Sveučilište u Zagrebu, Fakultet elektrotehnike i računarstva, citirano: 26.02.2024., <u>https://urn.nsk.hr/urn:nbn:hr:168:997199</u>
- [23] Sousa, R.B., Petry, M.R. and Moreira, A.P., 2020, April. Evolution of odometry calibration methods for ground mobile robots. In 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (pp. 294-299). IEEE.
- [24] Božić, M., Jerbić, B. and Švaco, M., 2021, September. Development of a Mobile Wall-Climbing Robot with a Hybrid Adhesion System. In 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 1136-1142). IEEE.
- [25] Božić, M., Ćaran, B., Švaco, M., Jerbić, B. and Serdar, M., Mobile Wall-Climbing Robot for NDT inspection of vertical concrete structures.
- [26] Serdar, M., Damjanović, D., Švaco, M., Jerbić, B., Orsag, M. and Kovačić, Z., 2021. Development of an autonomous system for assessment and prediction of structural integrity. Gradevinar, 73(12.), pp.1173-1184.
- [27] Estimate Parameters from Measured Data MATLAB, 26.02.2024., https://www.mathworks.com/help/sldo/gs/estimate-parameters-from-measured-datausing-the-gui.html.
- [28] Parameter Estimation MATLAB & Simulink, 26.02.2024., https://www.mathworks.com/help/sldo/parameter-estimation.html.
- [29] Least-Squares (Model fitting) Algorithms MATLAB & Simulink, 26.02.2024.,. <u>https://www.mathworks.com/help/optim/ug/least-squares-model-fitting-algorithms.html#f204</u>
- [30] Find minimum of constrained nonlinear multivariable function MATLAB , 26.02.2024., https://www.mathworks.com/help/optim/ug/fmincon.html.
- [31] Goldberg, D. E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, New York.
- [32] Particle Swarm Optimization Algorithm MATLAB & Simulink, 26.02.2024., <u>https://www.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html.</u>
- [33] Particle swarm optimization MATLAB particleswarm, 26.02.2024., <u>https://www.mathworks.com/help/gads/particleswarm.html#buedrpj-5.</u>
- [34] OptiTrack softver "Motive", 07.05.2024., https://optitrack.com/software/motive/

Jakov	Jakov Vitko Diplomski rad							
[35]] OptiTrack kamere, 07.05.2024., <u>https://optitrack.com/cameras/primex-13/</u>							
[36]	Ćaran,	В.,	ROS	repozitor	ij za	uprav	ljanje	robotom,
	https://github.com/BCaran/wcr_onboard_ws/tree/master							
[37]	Menezes M.	., Evangel	ista R., Tra	ger J., MP	U6050 Driv	ver, <u>https://</u>	github.co	om/Brazilian-
	Institute-of-Robotics/mpu6050_driver/blob/master/src/mpu6050_node.cpp							
[38]	ROS	Wrapper	· fo	r Iı	ntel®	RealSen	se TM	Devices,
	https://github.com/IntelRealSense/realsense-ros/tree/ros1-legacy							
[39]	Intel®	Re	alSense™		SDK	2.0		(v2.53.1),
	https://github.com/IntelRealSense/librealsense/releases/tag/v2.53.1							
[40]	Robot_localization, https://wiki.ros.org/robot_localization							
[41]	Adafruit MPU6050 IMU senzor, 07.05.2024., https://www.adafruit.com/product/3886							
[42]	Robust Vi	sual-Inerti	al Tracki	ng with	Tracking	Camera	T265,	07.05.2024.,
	https://www.intelrealsense.com/visual-inertial-tracking-case-study/							

[43] Becker, A. (2023) Kilman Filter: From the ground up. KilmanFilter.NET.

I. Skripte za kalibraciju parametara pomoću četiri metode : https://github.com/JakVit/4WIS4WID parameter calibration