Upravljanje robotom s tri rotacijska stupnja slobode gibanja

Petener, Porin

Master's thesis / Diplomski rad

2011

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture / Sveučilište u Zagrebu, Fakultet strojarstva i brodogradnje

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:235:312575

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

Repository of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

Sveučilište u Zagrebu Fakultet strojarstva i brodogradnje

DIPLOMSKI RAD

Voditelj rada: doc. dr. sc Josip Kasać

Porin Petener

Zagreb, 2011.

Sveučilište u Zagrebu				
Fakultet strojarstva i				
brodogradnje				
Datum	Prilog			
Klasa:				
Ur.broj:				
3.6	1 000 - 1 10			

DIPLOMSKI ZADATAK

PORIN PETENER

Student:

Mat. br.: 0035140558

Naslov: UPRAVLJANJE ROBOTOM S TRI ROTACIJSKA STUPNJA SLOBODE GIBANJA

Opis zadatka:

Industrijski roboti i alatni strojevi s više rotacijskih stupnjeva slobode gibanja mogu biti opisani izuzetno složenim nelinearnim dinamičkim modelima. Unatoč toj složenosti, navedenim sustavima moguće je upravljati primjenom relativno jednostavnih PID regulatora. Za sintezu PID regulatora nije nužno eksplicitno poznavanje dinamičkog modela objekta upravljanja što je jedan od glavnih razloga široke rasprostanjenosti navedenog regulatora u industrijskim primjenama. Cilj ovog rada je pokazati da relativno jednostavne modifikacije osnovne strukture linearnog PID regulatora omogućuju bitno bolje upravljačke performanse.

U zadatku je potrebno:

- Implementirati dinamički model robota s tri rotacijska stupnja slobode gibanja u Matlabu.
- Implementirati linearni PD i PID regulator na problemu pozicioniranja robota.
- Uz pretpostavku da brzine nisu mjerljive, potrebno je implementirati filter za estimaciju brzine.
- Primjenom predfiltera referentnog signala demonstrirati poboljšanje prijelaznih performansi.
- Implementirati regulator s kliznim režimom (engl. *sliding-mode control*) te demonstrirati njegove performanse na problemu slijeđenja vremenski promjenjivog referentnog signala.
- Implementirati integralni regulator s kliznim režimom te demonstrirati poboljšanje performansi u usporedbi s konvencionalnim regulatorom s kliznim režimom.
- Implementirati navedene regulatore s kliznim režimom u kombinaciji s filterom za estimaciju brzine.

Zadatak zadan: 11. ožujka 2010. Zadatak zadao:

Doc. dr. sc. Josip Kasać

Rok predaje rada: Ožujak 2011. Predsjednik Povjerenstva:

Prof. dr. sc. Franjo Cajner

Sažetak

U ovom radu je opisano ponašanje raznih modifikacija PID regulatora na primjeru robota s tri rotacijska stupnja slobode gibanja (RRR). Programski kodovi robota s tri stupnja slobode gibanja i PID regulatora su implementirani u programskom paketu Matlab i pomoću tog su programa dobiveni simulacijski rezultati koji opisani u radu. Polazišna je točka klasični PID regulator za kojega su pronađena odgovarajuća suboptimalna pojačanja. Primjenom određenih modifikacija klasičnog PID regulatora, a to su korištenje predfiltera referentne pozicije i filtera za estimaciju brzine, te saturaciji vrijednosti upravljačkih veličina postignuta su poboljšanja performansi robota reguliranog PID regulatorom. Kako bi se osiguralo asimptotsko praćenje vremenski promjenjive reference pozicije, što nije moguće klasičnim PID regulatorom, pribjeglo se modifikaciji PID regulatora koju se naziva PID regulator s kliznim režimom rada. Primjenom PID regulatora s kliznim režimom moguće je realizirati slijeđenja proizvoljne referentne trajektorije.

Ključne riječi: robot, manipulator, PD, PID, filter za estimaciju brzine, upravljanje, regulacija, praćenje trajektorije

SADRŽAJ

1.	Uv	vod	1
2.	Im	plementacija dinamičkog modela robota u matlabu	4
2.	1.	Uvodno razmatranje	4
2.	2.	Dinamički model robota s tri rotacijska stupnja slobode gibanja	8
3.	Re	gulacija pozicije robota	13
3.	1.	Regulacija pozicije pomoću PD regulatora	
3.	2.	Kompenzacija utjecaja gravitacije kod pd regulatora	
3.	3.	Regulacija pozicije pomoću PID regulatora	
4.	Re	zultati simulacija	19
4.	1.	Uvodno razmatranje	
4.	.2.	Rezultati simulacija s pid regulatorom	
4.	3.	Rezultati simulacija s pd regulatorom	
4.	4.	Zaključak	
5.	Pr	edfilter referentne pozicije	
5.	1.	Uvodno razmatranje	
5.	.2.	Rezultati simulacija s predfiltrom	
6.	Fil	lter za estimaciju brzine	
6.	1.	Analiza filtera za estimaciju brzine	
6.	2.	Saturacija momenata	
7.	ΡI	D regulator s kliznim režimom rada	41
7.	1.	Uvodno razmatranje	41
7.	.2.	Rezultati simulacija	
8.	Za	ključak	47
Lite	ratu	ıra	
Prilo	og.		50

POPIS SLIKA

- Slika 2. 1 Robot kojemu su izlazi sila ili moment
- Slika 2. 1 Robot kojemu su izlazi sila ili moment
- Slika 2. 3 Robot kojemu su izlazi koordinate oznaka na objektu
- Slika 2. 4 Shematski prikaz robota s tri stupnja slobode gibanja (sferna struktura robota)
- Slika 2. 5 Skica robota s 3 rotacijska stupnja slobode gibanja
- Slika 3. 1 Shema PD regulatora s derivacijskim pojačanjem na povratnoj petlji brzine
- Slika 3. 2 Shema PD dijagrama s kompenzacijom gravitacije
- Slika 3. 3 Blokovski dijagram PD regulatora s predfilterom brzine
- Slika 3. 4 Shematski prikaz PID regulatora
- Slika 4. 1 Dijagramski prikaz odziva na intervalu K_p =800 do 1500 uz K_D = 500 i K_I = 350
- Slika 4. 2 Dijagramski prikaz odziva na intervalu $K_D = 800$ do 1500 uz $K_P = 1500$ i $K_I = 350$
- Slika 4. 3 Dijagramski prikaz odziva na intervalu K_I =800 do 1500 uz K_D = 500 i K_P = 1500
- Slika 4.4 Dijagramski prikaz odziva na intervalu $K_p = 800...1500$ ($K_I = 0$) uz $K_D = 500$
- Slika 4. 5 Dijagramski prikaz odziva na intervalu $K_D = 800$ do 1500 i $K_P = 1500$, UZ $K_I = 0$
- Slika 5. 1 Blokovski dijagram filtra brzine
- Slika 5. 2 Odzivi na step referencu za predfilter brzine
- Slika 6. 1 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 10
- Slika 6. 2 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 50
- Slika 6. 3 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 100
- Slika 6. 4 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 200

Slika 6.5

Slika 6. 6 Tangens hiperbolni

- Slika 6. 7 Aproksimacija korištena u svrhu saturacije upravljačkog momenta
- Slika 6. 8 Odzivi uz A= 200 i τ_{max} = 70 Nm
- Slika 7. 1 Odstupanje tijekom slijeđenja putanje za R = 0
- Slika 7. 2 Upravljačka veličina na sva tri zgloba tijekom slijeđenja trajektorije za R = 0
- Slika 7. 3 Saturirane upravljačke veličine tijekom slijeđenja trajektorije za R = 0
- Slika 7. 4 Odstupanje tijekom slijeđenja putanje za R = 50
- Slika 7. 5 Saturirane vrijednosti upravljačkih veličina uz R=50

POPIS TABLICA

- Tablica 4. 1 Indikatori simulacija za promjenjive vrijednosti Kp
- Tablica 4. 2 Indikatori simulacija za promjenjive vrijednosti K_D
- Tablica 4. 3 Indikatori simulacija za promjenjive vrijednosti K_I
- Tablica 4. 4 Indikatori simulacija za promjenjive vrijednosti K_p
- Tablica 4. 5 Indikatori simulacija za promjenjive vrijednosti K_D
- Tablica 5. 1 Indikatori za predfilter brzine
- Tablica 6. 1 Indikatori PID regulatora s filterom brzine

Tablica 6. 2

POPIS OZNAKA I MJERNIH JEDINICA

X	opća varijabla	
У	opća varijabla	
У	opća varijabla u matričnom zapisu	
Ζ.	opća varijabla	
q_i	pozicija <i>i</i> -tog zgloba (kutni zakret)	rad
q	pozicija zglobova u matričnom zapisu	
$\mathbf{P}_{i}^{\mathbf{X}}$	brzina <i>i</i> -tog zgloba	rad/s
¢	brzina zglobova u matričnom zapisu	
M_{ij}	komponente matrice inercija	
$\mathbf{M}(\mathbf{q})$	marica inercija sustava	
C_{i}	komponente Christoffelovog tenzora	
C(q, q)	Christoffelov tenzor	
g_i	komponente gravitacijskog vektora	
$\mathbf{g}(\mathbf{q})$	gravitacijski vektor utjecaja gravitacije	
$ au_{_i}$ ili $ au_{_{ij}}$	upravljački moment	Nm
τ	vektor upravljačkih momenata	
$\ \cdot\ $	euklidska udaljenost	
$\lambda_{_m}$	minimalna svojstvena vrijednost matrice M	
$\lambda_{_M}$	maksimalna svojstvena vrijednost matrice ${f M}$	
т	masa	kg
m_i	masa <i>i</i> -tog članka robota	kg
K_p	proporcionalno pojačanje	
K_D	derivacijsko pojačanje	
K _I	integracijsko pojačanje	
$ au_{max}$	maksimalni dozvoljeni moment	Nm
$tanh(\cdot)$	tangens hiperbolni	
S _{ij}	sinus	
c_{ij}	kosinus	
f	sila	Ν

- 🔹 brzina
- *e* regulacijska pogreška
- s regulacijska pogreška (specifična oznaka u robotici)

Izjava

Izjavljujem da sam ovaj diplomski rad izradio samostalno znanjem stečenim tijekom dosadašnjeg studija na Fakultetu strojarstva i brodogradnje u Zagrebu. Stručnu pomoć tijekom izrade diplomskog rada pružio mi je mentor doc. dr. sc Josip Kasać.

Zahvala

Zahvaljujem se svima, kako studentima tako i profesorima koji su pomogli i usmjeravali me savjetom i primjerom. Pošto je nemoguće navesti sve osobe koje su imale utjecaj na moj studij imenovati ću samo neke. Na prvom mjestu zahvaljujem se prof. dr.sc. Branku Novakoviću. Zbog njegovih predavanja sam upisao usmjerenje *Automatika u proizvodnji*. Svojim predavanjima i objašnjenjima uvelike su utjecao na mene dr. sc. Željko Šitum, izvanredni profesor i prof dr. sc. Bojan Jerbić. Ovom prilikom se zahvaljujem dr. sc. Jošku Deuru, izvanrednom profesoru koji se istaknuo jasnoćom sadržajnošću u svojim predavanjima isto kao i dr. sc. Danijel Pavković, viši asistent. Ipak bi bilo nepravedno najveću zahvalu ne uputiti prof. dr. sc. Dubravku Majetiću i doc. dr sc. Josipu Kasaču. Njih dvojica su imala daleko najveći utjecaj na moj studij, kako strpljenjem i susretljivošću, tako i stručnošću i jasnoćom u objašnjenjima i tumačenjima. Naravno da posebno mjesto u izradi ovoga rada zauzima doc. dr. sc. Josipu Kasać koji mi je kao mentor uvelike približio problematiku koja je ovdje razrađena i na tome se posebno zahvaljujem.

1. UVOD

U posljednja dva desetljeća razvijen je cijeli niz upravljačkih algoritama za robote, kao što su adaptivno upravljanje, neizrazito upravljanje i upravljanje primjenom neuronskih mreža. Pokraj svih tih upravljačkih algoritama i dalje su najčešće u primjeni PD, odnosno PID regulatori. Osnovni je razlog primjene PD i PID regulatora u njihovoj jednostavnosti i u njihovim relativno zadovoljavajućim performansama tijekom izvršavanja određenog zadatka, [1].

Dinamički modeli robota s više rotacijskih stupnjeva slobode gibanja su izuzetno složeni. Za simboličko izvođenje dinamičkog modela robota sa n > 2 rotacijskih stupnjeva slobode gibanja prema rekurzivnom Newton-Eulerovom algoritmu potrebno je do 92n - 127 množenja i do 81n - 117 zbrajanja koja uključuju trigonometrijske funkcije unutrašnjih koordinata i parametre robota. To znači da je za robot sa n = 6 stupnjeva slobode gibanja potrebno do 425 množenja i 369 zbrajanja. Unatoč toj složenosti nelinearnog dinamičkog modela moguća je asimptotska stabilizacija primjenom standardnih PID regulatora koji ne zahtijevaju nikakvo poznavanje dinamičkog modela robota (*engl.Model Free Control*), [2, 3].

PD regulator je najjednostavniji regulator sa stajališta primjene i analize stabilnosti i s njime se može postići asimptotska stabilizacija u slučaju da se upravljani sustav giba isključivo u horizontalnoj ravnini (SCARA struktura). Ukoliko postoji gibanje u vertikalnoj ravnini onda se s PD regulatorom ne može postići odziv bez trajnog regulacijskog odstupanja. Kako bi se dobio odziv s PD regulatorom bez trajnog regulacijskog odstupanja i to uz gibanje u vertikalnoj ravnini potrebno je poništiti utjecaj gravitacije, [2, 4]. Nedostatak je toga što egzaktni utjecaj gravitacije nepoznat. Za odziv bez trajnog regulacijskog odstupanja kada postoji gibanje u vertikalnoj ravnini potreban je PID regulator koji je i dalje relativno jednostavan za implementaciju. Ovdje nije potrebno poništavati utjecaj gravitacije zbog djelovanja I-člana. Problem je kod PID regulatora što je analiza stabilnosti zbog integracijskog člana bitno složenija nego kod PD regulatora.

Performanse linearnog PID regulatora je moguće poboljšati primjenom predfiltera referentne pozicije zato jer se izbjegavaju nagli skokovi upravljačkih varijabli. Nagle skokove upravljačke varijable se također može spriječiti primjenom saturacijskih funkcija. Prethodno navedeni PD i PID regulatori zahtijevaju mjerenje brzine što u praksi često nije dostupno. Zbog toga je u

interesu primjena filtera za estimaciju brzine, gdje se brzina estimira na temelju mjerene pozicije robota, [5].

Za vremenski konstante referentne vrijednosti moguća je asimptotska stabilizacija pozicije robota i to primjenom PID regulatora. U slučaju vremenski promjenjive referentne pozicije, tj. kada je referentna pozicija trajektorija koju treba slijediti u vremenu, koriste se metode poput adaptivnog upravljanja ili eksterne linearizacije, [1]. Kod tih je metoda problem što one nisu robusne u uvjetima neodređenosti dinamičkog sustava, već je nužno poznavati dinamički model robota. Kako bi se zaobišao taj problem pribjegava se slijeđenju trajektorije pomoću regulatora s kliznim režimom rada (*engl. Sliding Mode Control*). Takav regulator omogućuje slijeđenje trajektorije bez poznavanja dinamičkog modela robota. Međutim, ključni je problem ovoga tipa regulatora su visokofrekvencijske oscilacije upravljačke varijable (*engl. chattering*) što dovodi do rapidnog trošenja aktuatora. Taj se problem može izbjeći primjenom PID regulatora s kliznim režimom rada koji omogućuje praćenje vremenski promjenjive reference (trajektorije) bez oscilacija upravljačkih varijabli. Na taj se način vrlo jednostavnom modifikacijom klasičnog PID regulatora, koji nije mogao pratiti vremenski promjenjivu referencu, dobije regulator koji može slijediti zadanu trajektoriju, [6, 7, 8].

Opisana svojstva PID regulatora s kliznim režimom rada su vrlo poželjna u automatiziranim ili djelomično automatiziranim industrijskim pogonima. Zato se roboti mogu naći u širokoj primjeni u autoindustriji, u skladištima, za pakiranje, u proizvodnji kompjuterske opreme (zoran je primjer proizvodnja kompjutorskih miševa), u prehrambenoj industriji, pa čak i u tehnološkim postupcima obrade odvajanjem čestica, gdje se roboti koriste na onim mjestima na obratku do kojih bi čovjek mogao teško dosegnuti ili ne bi mogao uopće dosegnuti. Daljnji primjer primjene robota u industriji je prilikom postupka zavarivanja u kojem je potrebno slijediti vremenski promjenjivu referentnu poziciju, tj referentnu trajektoriju s visokim stupnjem preciznosti što za čovjeka nije moguće. Sve dosad iznijeto svjedoči o važnosti robota i PID regulatora u proizvodnji i industriji općenito.

Ovome je uvodnome dijelu dodan još i pregleda rada po poglavljima. Rad je podijeljen u osam poglavlja što uključuje uvodno poglavlje i zaključak. Poglavlja su ukratko opisana u narednim odlomcima.

U poglavlju 2. su definirani zadaci regulacije u robotici kao i zahtjevi kojima regulirani sustav mora udovoljiti. Ilustrirane su neke od mogućih izvedbi robota te su definirani izlazi reguliranog

sustava. tj. robota s tri rotacijska stupnja gibanja. Nadalje, dan je matematički opis dinamike robota i dani su uvjeti stabilnosti sustava.

U poglavlju 3. su opisani klasični PD i PID regulatori. Korištenjem PD regulatora za regulaciju robota RRR strukture nije moguće postići asimptotske odzive bez trajnog regulacijskog odstupanja i to zbog utjecaja gravitacije. Kako se utjecaj gravitacije može poništiti jedino u slučaju poznavanja gravitacijskog vektora, a koji u realnim okolnostima nije poznat, odustaje se od PD regulatora i pribjegava se PID regulatoru.

Poglavlje 4. sadržava rezultate simulacija PID regulatora (na primjeru robota RRR strukture) koji su dobiveni pomoću programskog paketa Matlab. Kroz dobivene simulacijske rezultate odredila su se pojačanja PID regulatora. Pošto su pojačanja dobivena heuristički ona su suboptimalna ali se s njima postiže asimptotska stabilizacija oko referentne vrijednosti pozicije.

U poglavlju 5. se klasični PID regulator modificira korištenjem predfiltera pozicije. Razlog modifikaciji su vrlo velika inicijalna naprezanja u zglobovima robota koja su izbjegnuta korištenjem filtera pozicije.

Nova modifikacija PID regulatora kojom je postignuto daljnje smanjenje naprezanja je predmet poglavlja 6. Tu se radi o filteru za estimaciju brzine kojim je postignuta minimizacija opterećenja zglobova. Ipak treba spomenuti da se je zbog jakog inicijalnog opterećenja koje ima svojstvo trzaja pribjeglo saturaciji upravljačkih veličina.

Poglavlje 7 donosi novu modifikaciju PID regulatora. Rezultat te modifikacije je PID regulator s kliznim režimom rada. Primjena tog poboljšanja omogućuje robotu s tri rotacijska stupnja slobode gibanja slijeđenje vremenski promjenjive reference pozicije, tj. putanje.

Poglavlje 8. iznosi zaključke diplomskog rada i povezuje te zaključke s praktičnom primjenom PID regulatora i robota u praksi.

2. IMPLEMENTACIJA DINAMIČKOG MODELA ROBOTA U MATLABU

2.1. UVODNO RAZMATRANJE

Dva vrlo bitna zadatka regulacije za robote su

- asimptotska stabilizacija oko konstantne reference (engl. regulation, ili engl. position control)
- asimptotsko praćenje vremenski promjenjive reference, tj. asimptotsko praćenje putanje (*engl. trajectory tracking*, ili *engl. motion control*)

Najjednostavniji način određivanja kretnji robota je, tzv. upravljanje točka – točka. Upravljanje točka – točka znači da vrh robota mora proći kroz niz zadanih točaka i to bez obzira na to kojom će putanjom proći kroz prostor. To znači da vrh robota postigne referentno stanje ali je nemoguće slijediti na taj način zadanu putanju jer će robot proći kroz zadanu točku ali uz prebačaj što je ilustrirano u 4. poglavlju. Kada se radi o slijeđenju vremenski promjenjive referentne putanje robot mora asimptotski slijediti zadanu putanju u prostoru za što su potrebne neke preinake u regulatoru i o tome će biti riječ u zadnjem poglavlju.

Da bi regulacija robota bila moguća mora se najprije odrediti koje fizikalne varijable upravljanog sustava želimo regulirati. To načelno mogu biti bilo koje varijable (veličine stanja) kao što su temperatura, tlak, pomak, brzina, ubrzanje i druge. Najčešće su spomenute varijable izlazi (odzivi) iz sustava. One varijable koje imaju utjecaj na izlaze sustava nazivamo ulazima u sustav. To mogu biti veličine poput struje, napona, momenta, sile, pomak klipa ventila itd., [4].

U konkretnom slučaju robotskog manipulatora postoji širok spektar izlaznih veličina iz sustava. Označene su općom varijablom y, a koja će u slučaju robotske ruke biti

$$\mathbf{y} = \mathbf{y} \left(\mathbf{q}, \mathbf{q}, \mathbf{q}, \mathbf{f} \right) = \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \\ \mathbf{x} \end{bmatrix}$$
(2.1)

Pri tome je f oznaka za silu, a q i ϕ su oznake za pomak i brzinu zglobova.

Za robote kakvog shematski prikazuje slika 2. 1 veličina y može biti sila ili momenti u zglobovima potrebni za mehaničku obradu površine.

Slika 2. 1 Robot kojemu su izlazi sila ili moment, [4]

Dok slika 2. 2 shematski prikazuje robota kojemu bi veličina y mogla, primjerice, biti pozicija i brzina zglobova q i \clubsuit .

Slika 2. 2 Robot kojemu su izlazi pozicija i brzina zglobova, [4]

Mogući je slučaj da su izlazi koordinate prepoznate pomoću vizijskog sustava, kao što prikazuje slika 2. 3

Slika 2. 3 Robot kojemu su izlazi koordinate oznaka na objektu, [4]

Ovdje su navedeni samo neke od mogućih izvedbi robotskih manipulatora s pripadajućim izlazima. Mogao bi se nabrojati još niz primjera ali se to smatra nepotrebnim za svrhe ovoga rada.

Kako bi se došlo do matematičkog modela potrebnog za regulaciju rada robota mogu se koristiti dva načelna pristupa. Prvi je pristup analitički, gdje se koristi poznavanje fizikalnih zakonitosti, kao i poznavanje njihove matematičke interpretacije, kako bi se opisalo gibanje sustava. Drugi je pristup eksperimentalan, gdje se podaci za matematički model dobivaju iz samoga sustava. Opis robotskog manipulatora (sustav s n SSG, što je multivarijabilni nelinearni sustav) se izvodi iz analitičke analize mehaničkih zakonitosti.

Regulirani sustav mora biti:

- stabilan, tj. sustav mora pratiti propisani režim rada unutar zadanih tolerancija
- robustan, što znači da je stabilan i kada se dogodi nepredviđeni poremećaj, a to slučaj upravo onda kada se zanemari dio dinamike (npr. trenje u zglobovima)
- optimiziran
- u stanju pratiti trajektoriju

U prethodnom odlomku spomenuti pojmovi (stabilnost, robusnost, optimiziranost, mogućnost da se prati trajektorija) su ujedno i zadaci regulacije. Nadalje se za regulacije bilo kojeg sustava mora provesti parametarska identifikacija fizikalnih veličina, tj, dobivanje numeričkih vrijednosti za neke fizikalne veličine.

Od sada nadalje govorit će se o robotima kojima su izlazi pomaci zglobova, a ulazi u sustav upravljački momenti u zglobovima. Zato se može reći da od sada nadalje vrijedi

$$\mathbf{q} = \begin{bmatrix} q_1 \\ q_2 \\ \mathbf{M} \\ q_n \end{bmatrix}$$
(2.2)

(2.3)

2.2. DINAMIČKI MODEL ROBOTA S TRI ROTACIJSKA STUPNJA SLOBODE GIBANJA

Da bi se mogao implementirati dinamički model robota, koji ima strukturu s tri rotacijska stupnja slobode gibanja (u nastavku RRR struktura ili samo RRR) u matlabu, potrebno je najprije poznavati analitičku formu toga modela. U slici 2. 4 je shematski prikaz robota RRR strukture.

Slika 2. 4 Shematski prikaz robota s 3 stupnja slobode gibanja (RRR struktura robota), [4]

Slika 2. 5 Skica robota s 3 rotacijska stupnja slobode gibanja, [4]

Veličine q_1 , q_2 , $i q_3$ su kutni zakreti rotacijskih stupnjeva slobode gibanja, tj. unutarnje koordinate robota. Dinamika robota je opisana izrazom

$$\mathbf{M}(\mathbf{q})\mathbf{\mathbf{q}} + \mathbf{C}(\mathbf{q},\mathbf{\mathbf{q}}) + \mathbf{g}(\mathbf{q}) = \mathbf{\tau}$$
(2.4)

Pri tome je $\mathbf{M}(\mathbf{q}) \in \Re^{n \times n}$ matrica inercija sustava, $\mathbf{C}(\mathbf{q}, \mathbf{q}) \mathbf{q}$ je vektor Coriolisovih i centrifugalnih sila, zvan Christoffelov tenzor, $\mathbf{g}(\mathbf{q}) \in \Re^{n \times n}$ je vektor gravitacijskih sila i momenata, a $\mathbf{\tau} \in \Re^{n \times n}$ je vektor vanjskih sila i momenata koji djeluju na rotacijske zglobove robota kao posljedica djelovanja gravitacije. Vektori $\mathbf{q} \mathbf{q} \mathbf{q} \in \Re^{n \times n}$ su ubrzanje, brzina i pozicija robota (respektivno).

Vektor stanja $\begin{bmatrix} \mathbf{q}^{\mathrm{T}} & \mathbf{q}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}}$ je

$$\frac{d}{dt} \begin{bmatrix} \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{bmatrix} = \begin{bmatrix} \mathbf{q} \\ \mathbf{M}(\mathbf{q})^{-1} \begin{bmatrix} \mathbf{\tau}(\mathbf{t}) - \mathbf{C}(\mathbf{q}, \mathbf{q}) & \mathbf{q} \\ \mathbf{q} \\ \mathbf{q} \end{bmatrix}$$
(2.5)

Za robote s rotacijskim stupnjevima slobode gibanja vrijede slijedeće ocjene stabilnosti:

 $\lambda_m \{\mathbf{M}\} \|\mathbf{y}\|^2 \leq \mathbf{y}^{\mathrm{T}} \mathbf{M}(\mathbf{q}) \mathbf{z} \leq \lambda_M \{\mathbf{M}\} \|\mathbf{z}\|^2$, gdje je $\|\cdot\|$ euklidska norma vektora, dok su λ_m , λ_M oznake za minimalnu i maksimalnu svojstvena vrijednost matrice, respektivno.

 $\|\mathbf{C}(\mathbf{q}, \mathbf{q})\mathbf{q}\| \le k_C \|\mathbf{q}\|^2$, gdje je k_C neka pozitivna konstanta.

 $\|g(x) - g(y)\| \le k_g \|x - y\|$, gdje je k_g neka pozitivna konstanta, [5].

Drugim riječima rečeno ako se želi regulirati pozicija robota, mora se naći τ , takav da zadovoljava izraz

$$\lim_{t \to \infty} \mathbf{q}(t) = \mathbf{q}_{\mathbf{d}} \tag{2.6}$$

Pri tome je $\mathbf{q}_{\mathbf{d}} \in \mathfrak{R}^n$ konstanta i označava željenu poziciju zglobova. Želi se postići da je

$$\lim_{t \to \infty} \widetilde{\mathbf{q}}(t) = 0 \tag{2.7}$$

gdje je

$$\widetilde{\mathbf{q}}(t) = \mathbf{q}_{\mathbf{d}} - \mathbf{q}(t) \tag{2.8}$$

i $\widetilde{\mathbf{q}}(t) \in \mathfrak{R}^n$, [4].

Dosada je opisana u općim crtama dinamika robota za detaljniji izvod vidi [4]. Međutim treba steći detaljniji uvid u matrice M(q), C(q) i C(q).

U nastavku će u prijašnjemu tekstu spomenute matrice biti opisane, [3].

$$\begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ g_3 \end{bmatrix} + \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix} \begin{bmatrix} \varphi_1^2 \\ \varphi_2^2 \\ \varphi_3^2 \end{bmatrix} + \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$$
(2.9)

Pri tome su

$$\tau_{1} = \tau_{11} + \tau_{12} + \tau_{13} + \tau_{1m}$$

$$\tau_{2} = \tau_{22} + \tau_{23} + \tau_{2m}$$

$$\tau_{3} = \tau_{33} + \tau_{3m}$$

(2.10)

10

Treba napomenuti da su ovdje korištene oznake τ , *g i M* umjesto oznaka *T*, *G i H* (respektivno) koje su korištene u [3], kako bi oznake bile konzistentne s prijašnjim tekstom. U narednim jednadžbama L_1 , L_2 *i* L_3 su duljine članaka robota, a s_{ij} i c_{ij} su sinus i kosinus, dok su m_i i *m* mase pojedinih članka i ukupna masa.

$$g_{1} = 0$$

$$g_{2} = g \left[\frac{1}{2} m_{3} L_{3} s_{23} + m_{3} \left(L_{2} s_{2} + \frac{1}{2} L_{3} s_{23} \right) + m \left(L_{2} s_{2} + L_{3} s_{23} \right) \right]$$

$$g_{3} = g \left(L_{2} s_{2} + \frac{1}{2} L_{3} s_{23} \right)$$

$$M_{11} = I_{1} + \frac{1}{3} m_{2} L_{2}^{2} s_{2}^{2} + m_{3} \left(L_{2}^{2} s_{2}^{2} + L_{2} L_{3} s_{2} s_{23} + \frac{1}{3} L_{3}^{2} s_{23}^{2} \right) + m \left(L_{2} s_{2} + L_{3} s_{23} \right)^{2}$$

$$M_{12} = M_{21} = M_{13} = M_{31} = 0$$

$$M_{22} = \frac{1}{3} m_{2} L_{2}^{2} + m_{3} \left(L_{2}^{2} + L_{2} L_{3} c_{3} + \frac{1}{3} L_{3}^{2} \right) + m \left(L_{2}^{2} + 2 L_{2} L_{3} c_{3} + L_{3}^{2} \right)$$

$$M_{23} = \frac{1}{2} m_{3} \left(L_{2} L_{2} c_{3} + \frac{2}{3} L_{3}^{2} \right) + m L \left(L_{2} c_{3} + L_{3} \right) = M_{32}$$

$$M_{33} = \frac{1}{3} m_{3} L_{3}^{2} + m L_{3}^{2} = const.$$
(2.11)
(2.11)
(2.11)
(2.11)
(2.11)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)
(2.12)

$$C_{1} = D_{112} \oint_{113} \oint_{113} \oint_{113} \oint_{123} \oint_{1$$

$$D_{112} = \frac{2}{3} m_1 L_2^2 s_2 c_2 m_3 \left[2L_2^2 s_2 c_2 + L_2 L_3 \left(c_2 s_{23} + s_2 c_{23} \right) + \frac{2}{3} L_3^2 s_{23} c_{23} \right] + 2m \left(L_2 s_2 + L_3 s_{23} \right) \left(L_2 c_2 + L_3 c_{23} \right)$$

$$D_{113} = m_3 + \left(L_2 L_3 s_2 c_{23} + \frac{2}{3} L_3^2 s_{23} c_{23} \right) + 2m L_3 c_{23} \left(L_2 s_2 + L_3 s_{23} \right)$$

$$D_{211} = -\frac{1}{2} D_{112}$$

$$D_{223} = -L_2 L_3 s_3 \left(m_3 + 2m \right)$$

$$D_{311} = \frac{1}{2} D_{113}$$

$$D_{311} = \frac{1}{2} D_{113}$$

$$D_{322} = -\frac{1}{2} D_{223}$$
(2.14)

Rješenje inverznog kinematičkog problema RRR robota je

$$\mathbf{\mathbf{\Phi}} = \mathbf{M}^{-1} \left(\boldsymbol{\tau} \cdot \mathbf{g} \cdot \mathbf{C} \right) \tag{2.15}$$

3. REGULACIJA POZICIJE ROBOTA

3.1. REGULACIJA POZICIJE POMOĆU PD REGULATORA

Najjednostavniji oblike regulacije je pomoću PD regulatora. Slika 3. 1 prikazuje shemu PD regulatora pozicije. Objekt regulacije je robot. Vodeća je veličina \mathbf{q}_d , dok su, redom, \mathbf{q} i \mathbf{q}_i ostvareni odzivi. K_P i K_D su proporcionalno i derivacijsko pojačanje, dok je τ ostvareni moment u zglobovima robota. Treba obratiti pozornost da su debelo tiskane veličine matrice i stoga ovaj model vrijedi za svaki stupanj slobode gibanja robota (u nastavku SSG).

Slika 3. 1 Shema PD regulatora s derivacijskim pojačanjem na povratnoj petlji brzine, [4]

Iz slike 3.1 slijedi da je

$$\boldsymbol{\tau} = \mathbf{K}_{\mathbf{p}} \boldsymbol{\phi} \cdot \mathbf{K}_{\mathbf{p}} \boldsymbol{\phi}$$
(3.1)

Kriterij stabilnosti robotskog manipulatora (s rotacijskim stupnjevima slobode gibanja) u zatvorenoj petlji s PD regulatorom je

$$\lambda_m \{ \mathbf{K}_{\mathbf{P}} \} > k_g, \tag{3.2}$$

gdje je

$$\lambda_m \{ \mathbf{K}_{\mathbf{P}} \} \tag{3.3}$$

13

minimalna svojstvena vrijednost matrice proporcionalnih pojačanja (koja je za dijagonalnu matricu jednaka minimalnoj vrijednosti pojačanja). Dokaz za ove uvjete stabilnosti se može naći u [4].

3.2. KOMPENZACIJA UTJECAJA GRAVITACIJE KOD PD REGULATORA

U slici 2. 4 je vektorom prikazan utjecaj gravitacije, a taj je utjecaj u analitičkom obliku opisanu jednadžbama iz poglavlja 2. PD regulator je najjednostavniji sa stanovišta implementacije kao i analize stabilnosti i omogućuje asimptotsku stabilizaciju za robote s gibanjem u horizontalnoj ravnini. Međutim, u slučaju PD regulacije robota sa rotacijskim stupnjevima slobode gibanja (to uključuje i gibanje u vertikalnoj ravnini) postoji trajno regulacijsko odstupanje. *Da bi se otklonilo trajno regulacijsko odstupanje, nužno je PD regulatoru dodati integracijsko djelovanje.* PID regulator je i dalje relativno jednostavan za implementaciju, međutim analiza stabilnosti je zbog integracijskog djelovanja bitno složenija nego za PD regulator, [1].

Da bi bilo moguće kompenzirati utjecaj gravitacije, a time i otkloniti trajno regulacijsko odstupanje nužno je poznavati vektor gravitacije $\mathbf{g}(\mathbf{q})$, a za to je nužno barem djelomično poznavanje geometrije robotskog manipulatora. Uz to je nemoguće odrediti vektor gravitacije posve točno Utjecaj je gravitacije nula ako je željena pozicija \mathbf{q}_d odabrana tako da je $\mathbf{g}(\mathbf{q}_d) = 0$.

Matematički izraz koji opisuje regulacijsku zakonitost glasi

$$\boldsymbol{\tau} = \mathbf{K}_{\mathbf{p}} \boldsymbol{d} \boldsymbol{\phi} + \mathbf{K}_{\mathbf{D}} \boldsymbol{d} \boldsymbol{\phi} + \mathbf{g}(\mathbf{q}) \tag{3.4}$$

Iz jednadžbe se vidi da je τ određen samo poznavanjem vektora g(q), a ne kako je to prije bio slučaj (poglavlje 2.) poznavanjem vektora g(q) i M(q). Vektor g(q) se može relativno lako dobiti parcijalnom derivacijom potencijalne energija po upravljanoj koordinati. Slika 3. 3 prikazuje blok shemu PD regulatora s kompenzacijom gravitacije, na kojoj je u shematski prikaz izraza (3.6), [4].

Kriterij stabilnosti za sustav opisan jednadžbom (3-7) je

$$\mathbf{K}_{\mathbf{p}}, \mathbf{K}_{\mathbf{D}} > 0 \tag{3.5}$$

Potreba za poznavanjem vektora g(q) komplicira matematiku u izračunima. Vektor g(q) može se zamijeniti s $g(q_d)$, što bi onda bio željeni gravitacijski utjecaj. Izraz (3-7) onda prelazi u

$$\boldsymbol{\tau} = \mathbf{K}_{\mathbf{p}} \mathbf{q} + \mathbf{K}_{\mathbf{D}} \mathbf{q} + \mathbf{g}(\mathbf{q}_{\mathbf{d}})$$
(3.6)

Kriterij stabilnosti je onda

$$\lambda_m \{ \mathbf{K}_{\mathbf{p}} \} > k_g \tag{3.7}$$

dok je

$$k_g = \max_q \frac{\partial \mathbf{g}(\mathbf{q})}{\partial \mathbf{q}}, \qquad (3.8)$$

Slika 3. 2 Shema PD dijagrama s kompenzacijom gravitacije

Iz svega se može zaključiti da je za PD regulaciju uvijek važno precizno mjerenje brzine, a za takvo mjerenje brzine potrebni su i precizni mjerni uređaji, kao što su npr. vrlo precizni optički enkoderi. Moguće je koristiti i, npr. tahometre ili numeričku aproksimaciju brzine ali te dvije metode u usporedbi s preciznim optičkim enkoderima ne daju dobre rezultate i mogu dovesti čak do nestabilnosti sustava, uslijed stvaranja mjerne pogreške.

Nameće se zaključak da bi bilo dobro izbjeći mjerenje brzine. S jedne stane povratna petlja s upitnom kvalitetom mjerenja nije preporučljiva, a s druge strane uklanjanje senzora brzine robotu snizuje cijenu i težinu. Kako bi se izbjeglo potrebu za mjerenjem brzine uvodi se izraz

$$\mathbf{\hat{q}} = \mathbf{\hat{q}}_{\mathbf{\hat{d}}} - \mathbf{v} \tag{3.9}$$

Pri tome je $\mathbf{v} \in \mathfrak{R}^n$, odziv filtriranja pozicije **q**. Regulacijska zakonitost za PD regulaciju s poništenjem utjecaja gravitacije (s kompenzacijom gravitacije) je

$$\boldsymbol{\tau} = \mathbf{K}_{\mathbf{p}} \boldsymbol{q} + \mathbf{K}_{\mathbf{D}} [\boldsymbol{q}_{\mathbf{d}} - \boldsymbol{v}] + \mathbf{g}(\mathbf{q})$$
(3.10)

Pri tome su $\mathbf{K}_{\mathbf{p}}, \mathbf{K}_{\mathbf{D}} \in \Re^{n}$ pozitivno definitne. Slika 3. 4 prikazuje blokovski dijagram iz kojega je izveden izraz (3.10). Nedostatak je ove metode da je potrebno poznavati vektor $\mathbf{g}(\mathbf{q})$. Taj vektor zapravo nikada nije egzaktno poznat, a ova metoda upravo pretpostavlja egzaktno poznavanje gravitacijskog vektora. Time i završava razmatranje PD regulacije jer se s PID regulacijom postiže asimptotska stabilizacija oko referentne vrijednosti bez određivanja gravitacijskog vektora.

Slika 3. 3 Blokovski dijagram PD regulatora s predfilterom pozicije

3.3. REGULACIJA POZICIJE POMOĆU PID REGULATORA

Slika 3. 2 prikazuje shemu PID regulatora. Kao kod PD regulatora objekt regulacije je robot. Ostvarene su veličine opet \mathbf{q} i ovaj puta \mathbf{q} , što je ostvarene kutne brzine zglobova robota, dok su vodeće veličine $\mathbf{q}_{\mathbf{a}}$, i $\mathbf{q}_{\mathbf{d}}$.

Slika 3. 4 Shematski prikaz PID regulatora

Iz sheme se može zaključiti da je matrica momenata u zglobovima robota

$$\tau = \mathbf{K}_{\mathbf{p}} \mathbf{d} \mathbf{b} + \mathbf{K}_{\mathbf{p}} \mathbf{d} \mathbf{b} + \mathbf{K}_{\mathbf{i}} \boldsymbol{\xi} \tag{3.11}$$

pri tome je

$$\mathbf{\hat{\xi}} = \mathbf{\hat{f}}$$
(3.12)

Kriterij lokalne stabilnosti robotskog manipulatora (s rotacijskim stupnjevima slobode gibanja) u zatvorenoj petlji s PID regulatorom je

$$\left(\lambda_{m}\left\{\mathbf{K}_{\mathbf{p}}\right\}-k_{g}\right)\lambda_{M}\left\{\mathbf{K}_{\mathbf{D}}\right\}>\lambda_{M}\left\{\mathbf{M}\right\}\lambda_{M}\left\{\mathbf{K}_{\mathbf{I}}\right\}$$
(3.13)

4. REZULTATI SIMULACIJA

4.1. UVODNO RAZMATRANJE

U ovome se poglavlju komentiraju i tumače rezultati dobiveni simulacijama matlab algoritma za robot RRR strukture. Rezultati se odnose na pozicioniranje robotskog manipulatora, a pobudna funkcija je step iznosa 1. Treba napomenuti da nisu komentirani svi rezultati koji su dobiveni u simulacijama jer su neki odziva dobiveni simulacijama vrlo loši, kako u pogledu točnosti tako i u pogledu brzine odziva. Stoga, su komentirani samo oni rezultati koji se smatraju zadovoljavajućima u smislu brzine odziva i točnosti odziva.

Potrebno je reći još pokoju riječ o načinu na koji su provedena mjerenja. Kao što je u uvodu već spomenuto radi se o heurističkom pristupu testiranja odabranih pojačanja. U matlab kodu za PID regulator su se odabrale dvije proizvoljne konstante pojačanja čije su se vrijednosti fiksirale (ovdje se je autor odlučio da to budu pojačanja K_D i K_I , dakle, derivacijsko i integracijsko pojačanje), dok se je proporcionalno pojačanje K_p mijenjalo i to u 4 raspona. Prvi je raspon od 50 do 200, u koracima od 50 (50, 100, 150, 200). Drugi je raspon od 200 do 800, u koracima od 200 (200, 400, 600, 800). Treći raspon je od 800 do 1500, a vrijednosti su 800, 1000, 1200, 1500. Četvrti je raspon od 900 do 1400, vrijednosti su 900, 1100, 1300, 1400. Vidi se da su treći i četvrti raspon vrlo slični, te da četvrti raspon upravo pokriva vrijednosti proporcionalnog pojačanja koje se nalaze između onih vrijednosti koje su uzete u trećem rasponu. Razlog tomu je što treći raspon daje najbolje rezultate odziva upravljanih (unutarnjih) koordinata q_1 , q_2 i q_3 . Stoga se smatralo zgodnim taj raspon vrijednosti dodatno ispitati, što je učinjeno uvođenjem četvrtog intervala od 900 do 1400.

Dosada je opisan postupak izbora proporcionalnih pojačanja. Izbor za različita pojačanja K_D i K_I je analogan dosad opisanome postupku (iako je uobičajeno označavanje K_D , ovdje se zbog konzistentnosti s korištenom literaturom koristila oznaka K_D). Jedina je razlika u tome koje se pojačanje fiksira, a koje se mijenja (u istim rasponima i vrijednostima kao i za pojačanje K_p). Birani redoslijed je da se najprije mijenja K_D , a zatim K_I . Za numeričku usporedbu rezultata simulacija su korišteni indikatori koji su dobiveni uz pomoć matlaba, a sastavni su dio programskog koda pomoću kojega su dobiveni i dijagrami koji su prikazani u nastavku teksta. Ti indikatori su: ISE kriterij (indikator 1), omjer maksimalnog prebačaja i referentne pozicije u

postocima (indikator 2) i maksimalna vrijednost momenata na zglobovima (indikator 3). Čitavi programski kod dan je u prilogu, a ISE (*engl. Integral of Squared Error*) kriterij glasi

$$\int_{0}^{\infty} e^{2}(t) dt \to \min$$
(4.1)

Pri tome e označava pogrešku. U ovome se radu koristio ISE kriterij u obliku sljedeće jednadžbe

$$ISE = \frac{\int \partial_1^2 dt + \int \partial_2^2 dt + \int \partial_3^2 dt}{3}$$
(4.2)

ISE kriterij, dakle, zahtijeva da kvadrat zbroja pogreške teži u što manje vrijednosti, a što je ISE manji to je sustav stabilniji.

4.2. REZULTATI SIMULACIJA S PID REGULATOROM

U narednoj tablici 4.1 dane vrijednosti indikatora dobivene iz matlaba, a dijagrami za sva pojačanja (K_p , $K_D i K_I$) dani su u prilogu.

	K_p	50	100	150	200	
$K_{\rm r} = 350$	Indikator 1	0.7794	0.6950	0.6273	0.5718	
$K_{\rm P} = 500$ $K_{\rm D} = 500$	Indikator 2	39.9284	35.4404	31.4817	27.9801	
$m_D = 0.000$	Indikator 3	62.9254	62.9358	67.9946	88.5738	
	K _p	200	400	600	800	
$K_{1} = 350$	Indikator 1	0.5718	0.4240	0.3382	0.2820	
$K_{P} = 500$ $K_{D} = 500$	Indikator 2	27.9801	17.4479	10.6813	6.2097	
	Indikator 3	88.5738	170.5624	252.0224	332.9491	
	K _p	800	1000	1200	1500	
$K_{2} = 350$	Indikator 1	0.2820	0.2424	0.2130	0.1806	
$K_{\rm D} = 500$	Indikator 2	6.2097	3.2089	1.2207	-0.0109	
	Indikator 3	332.9491	413.3380	493.1854	611.9320	
	K _p	900	1100	1300	1400	
V = 250	Indikator 1	0.2607	0.2267	0.2009	0.1902	
$K_{D} = 500$	Indikator 2	4.5610	2.1056	0.5789	0.1771	
10 000	Indikator 3	373.2111	453.3297	532.9047	572.4870	

Tablica 4. 1 Indikatori simulacija za promjenjive vrijednosti K_p

Uz tablicu 4. 1 ide i slika 4. 1 s dijagramskim prikazima odziva q_1 , q_2 i q_3 . Za raspon od 800 do 1500 za proporcionalno pojačanje (uspravno otiskani redi tablice 4.1). U donjem dijelu slike vide se tri dijagrama, a to su $u_1(t)$, $u_2(t)$ i $u_3(t)$. Ta tri dijagrama pokazuju momentno opterećenje u zglobovima robota.Iz slikovnih i numeričkih podataka se može zaključiti da je najpovoljnija vrijednost proporcionalnog pojačanja $K_p = 1500$ jer je uz to pojačanja najmanji prebačaj i iznosi -0.0109, što se onda u smislu prebačaja može zaokružiti na nulu jer prebačaj i ne postoji. S proporcionalnim pojačanjem ulazi se u dio postupka koji obuhvaća namještanje derivacijskog pojačanja K_D .

Tablica 4. 2 pokazuje vrijednosti indikatora dobivenih za fiksno proporcionalno pojačanje $K_p =$ 1500 i za fiksno integracijsko pojačanje $K_I = 350$.

Slika 4. 1 Dijagramski prikaz odziva na intervalu K_p =800 do 1500 uz K_D = 500 i K_I = 350

	K _D	50	100	150	200
$K_{\rm r} = 350$	Indikator 1	0.073429	0.079051	0.09006	0.10232
$K_1 = 550$ $K_2 = 1500$	Indikator 2	7.1858	-0.17312	-0.14933	-0.12651
11p 1000	Indikator 3	1491.7	1329.6	1187.1	1064.3
	K _D	200	400	600	800
$K_{1} = 350$	Indikator 1	0.10232	0.15421	0.20712	0.26028
$K_{\rm r} = 550$ $K_{\rm r} = 1500$	Indikator 2	-0.12651	-0.044858	0.86034	3.7745
11p 1000	Indikator 3	1064.3	722.17	527.24	408.42
				1	
	K_D	800	1000	1200	1500
$K_{L} = 350$	K _D Indikator 1	800 0.26028	1000 0.31355	1200 0.36688	1500 0.44693
$K_I = 350$ $K_P = 1500$	K _D Indikator 1 Indikator 2	800 0.26028 3.7745	1000 0.31355 6.4645	1200 0.36688 8.8598	1500 0.44693 12
$K_I = 350$ $K_p = 1500$	KDIndikator 1Indikator 2Indikator 3	800 0.26028 3.7745 408.42	1000 0.31355 6.4645 331.05	1200 0.36688 8.8598 277.61	1500 0.44693 12 223.19
$K_I = 350$ $K_p = 1500$	KDIndikator 1Indikator 2Indikator 3KD	800 0.26028 3.7745 408.42 900	1000 0.31355 6.4645 331.05 1100	1200 0.36688 8.8598 277.61 1300	1500 0.44693 12 223.19 1400
$K_I = 350$ $K_p = 1500$ $K_I = 350$	KDIndikator 1Indikator 2Indikator 3KDIndikator 1	800 0.26028 3.7745 408.42 900 0.2869	1000 0.31355 6.4645 331.05 1100 0.34021	1200 0.36688 8.8598 277.61 1300 0.39356	1500 0.44693 12 223.19 1400 0.42025
$K_I = 350$ $K_p = 1500$ $K_I = 350$ $K_p = 1500$	KDIndikator 1Indikator 2Indikator 3KDIndikator 1Indikator 2	800 0.26028 3.7745 408.42 900 0.2869 5.1584	1000 0.31355 6.4645 331.05 1100 0.34021 7.6962	1200 0.36688 8.8598 277.61 1300 0.39356 9.9614	1500 0.44693 12 223.19 1400 0.42025 11.006

Tablica 4. 2 Indikatori simulacija za promjenjive vrijednosti K_D

Pošto se razmotri tablica indikatora može se zaključiti da optimalno pojačanje $K_D = 400$. Međutim ne bi bilo dobro dva puta za redom ne dostizati vrijednost pozicioniranja. Naime, u prvoj fazi kada se namještalo proporcionalno pojačanje dostigla se vrijednost drugo indikatora od -0.0109, što odgovara netočnosti pozicioniranja od 0.01% ispod zahtijevane vrijednosti. ta se je vrijednost prihvatila jer se radilo o prvoj fazi namještanja i postignuta je vrijednost blizu zahtijevane. Ipak se smatra da ne bi bilo preporučljivo u dvije različite vrste pojačanja (K_p , K_D), a od ukupno tri vrste pojačanja (K_p , K_D , K_I), unositi svojevrsnu pogrešku koja svaki put "vuče" ispod zahtijevane vrijednosti. Zato se ovdje nije pribjeglo izboru pojačanja $K_D = 400$, nego se uzelo pojačanje između 400 i 600 jer pojačanje od 600 daje vrijednost prebačaja od 0.86034. Za očekivati je stoga da će vrijednost od $K_D = 500$ dati, u vidu svega izrečenog, bolje rezultate u završnoj fazi namještanja pojačanja K_I .

Pošto se razmotri tablica indikatora može se zaključiti da optimalno pojačanje $K_D = 400$. Međutim ne bi bilo dobro dva puta za redom ne dostizati vrijednost pozicioniranja. Naime, u prvoj fazi kada se namještalo proporcionalno pojačanje dostigla se vrijednost drugo indikatora od -0.0109, što je proporcionalno netočnosti pozicioniranja ispod zahtijevane vrijednosti. Iako indikator 2 nije namijenjen kao mjera točnosti odziva nego kao mjera maksimalnog prebačaja u postocima, ovdje se može govoriti i o mjeri točnosti pošto je odziv asimptotski aperiodski, a prebačaja nema. Stoga u matematičkom smislu prebačaj postaje negativan i iznosi -0.0109. Ta se je vrijednost prihvatila jer se radilo o prvoj fazi namještanja i postignuta je vrijednost blizu zahtijevane. Ipak se smatra da ne bi bilo prebačaj postaje negativan i iznosi -0.0109. Ta se je vrijednost prihvatila jer se radilo o prvoj fazi namještanja i postignuta je vrijednost blizu zahtijevane. Ipak se smatra da ne bi bilo preporučljivo u dvije različite vrste pojačanja (K_p i K_D), a od ukupno tri vrste pojačanja (K_p, K_D i K_I), unositi svojevrsnu pogrešku koja svaki put "vuče" ispod zahtijevane vrijednosti. Zato se ovdje nije pribjeglo izboru pojačanja $K_D = 400$, nego se uzelo pojačanje između 400 i 600 jer pojačanje od 600 daje vrijednost prebačaja od 0.86034. Za očekivati je stoga da će vrijednost od $K_D = 500$ dati, u vidu svega izrečenog, bolje rezultate u završnoj fazi namještanja pojačanja K_{I} .

Analogijom prethodnih koraka dolazi se do vrijednosti od $K_I = 1500$. Iz tablice je 4. 3 uzeto maksimalno pojačanje unatoč visokim naprezanjima jer se izborom tog pojačanja postiže maksimalna točnost. Ovdje se može govoriti o točnosti jer je ona u ovom slučaju praktički istovjetna maksimalnom prebačaju jer se krivulje odziva na dijagramima u slici 4. 3 ponašaju asimptotski i aperiodski, a nema prebačaja. "Prebačaj" ostaje negativan, stoga je ono pojačanje koje daje maksimalnu točnost (najmanji "negativni" prebačaj) uz najveću brzinu odziva najbolje.

Uz to i ne postoji niti jedno integracijsko pojačanje iz sva 4 raspona koje bi u bitnome umanjilo momente u zglobovima robota.

Slika 4. 2 Dijagramski prikaz odziva na intervalu $K_D = 800$ do 1500 uz $K_P = 1500$ i $K_I = 350$

Pošto je ponašanje krivulja asimptotsko, što znači da nema prebačaja (slika 4. 5), može se opet zaključiti da je najpovoljnije izabrati pojačanje $K_I = 1500$ jer je indikator 2 taj koji određuje točnost odziva. Kako su naprezanja za to pojačanje relativno velika moglo bi se pretpostaviti da bi trebalo birati drugačiju vrijednost pojačanja, ali niti jedna vrijednost pojačanja ne umanjuje u bitnome opterećenje koje nastaje u zglobovima. Zbog toga se ne odustaje od vrijednosti $K_I =$ 1500 koji ipak ima najmanju vrijednost indikatora 1

	K _I	50	100	150	200
$K_{\rm D} = 500$	Indikator 1	0.1831	0.1821	0.1816	0.1812
$K_{p} = 1500$	Indikator 2	-0.7677	-0.3731	-0.1821	-0.0893
$\mathbf{n}_p = 1000$	Indikator 3	609.7282	610.0964	610.4643	610.8317
	K _I	200	400	600	800
$K_{\rm D} = 500$	Indikator 1	0.1812	0.1805	0.1800	0.1796
$K_{D} = 500$ $K_{n} = 1500$	Indikator 2	-0.0893	-0.0055	-0.0004	-0.0000
11p 1000	Indikator 3	610.8317	612.2980	613.7584	615.2129
	K _I	800	1000	1200	1500
$K_D = 500$ $K_z = 1500$	Indikator 1	0.1796	0.1794	0.1791	0.1788
	Indikator 2	-0.0000	-0.0000	0.0000	0.0000
p	Indikator 3	615.2129	616.6616	618.1043	620.2575
	K _I	900	1100	1300	1400
$K_{\rm p} = 500$	Indikator 1	0.1795	0.1792	0.1790	0.1789
$m_D = 500$	T 1º1 4 0	0.0000	-0.0000	0.0000	0.0000
$K_n = 1500$	Indikator 2	-0.0000	-0.0000	0.0000	0.0000

Tablica 4. 3 Indikatori simulacija za promjenjive vrijednosti K_I

Slika 4. 3 Dijagramski prikaz odziva na intervalu K_I =800 do 1500 uz K_D = 500 i K_P = 1500
4.3. REZULTATI SIMULACIJA S PD REGULATOROM

Analogno prethodnome poglavlju provedeno je namještanje pojačanja K_p i K_D , ali uz razliku da je u matlabovom kodu za PID regulator pojačanje K_I postavljeno na nulu. Ono što time ostaje u programskom kodu jest upravo PD regulator.

	K _p	50	100	150	200
	Indikator 1	4.4036	2.7853	1.9525	1.4734
$K_D = 350$	Indikator 2	-54.686	-31.888	-20.07	-13.752
	Indikator 3	30.2926	53.7686	80.5864	107.3598
	K_p	200	400	600	800
	Indikator 1	1.4734	0.71466	0.46684	0.34687
$K_D = 350$	Indikator 2	-13.752	-5.8524	-3.8909	-2.9402
	Indikator 3	107.3598	214.0051	319.9254	425.1112
	K_p	800	1000	1200	1500
	Indikator 1	0.34687	0.27658	0.23052	0.18518
K _D = 350	Indikator 2	-2.9402	-2.3639	-1.9764	-1.5862
	Indikator 3	425.1112	529.5532	633.2432	787.3497
	K_p	900	1100	1300	1400
	Indikator 1	0.30765	0.25137	0.21299	0.19806
K _D = 350	Indikator 2	-2.6208	-2.1529	-1.8266	-1.698
	Indikator 3	477.4258	581.4929	684.8034	736.1726

Tablica 4. 4 Indikatori simulacija za promjenjive vrijednosti K_p

Kako je postupak namještanja pojačanja opisan u prethodnim odlomcima smatra se nepotrebnim iznositi iznova način kojim se je stiglo do numeričkih vrijednosti pojačanja K_p i K_D , te će biti samo pokazane tablice 4. 4 i 4. 5 uz dijagrame za najzanimljivije slučaje.

Tablica 4. 4 jasno prikazuje da treba birati $K_p = 1500$ jer prebačaja nema, a ponašanje je krivulja iz dijagrama u slici 4. 4 asimptotsko, iako uz trajno regulacijsko odstupanje od ~ 1,6 %. Naime, trajno regulacijsko odstupanje nije moguće otkloniti uz PD regulator ako nije poznat gravitacijski vektor koji se onda mora kompenzirati, a to je samo moguće uz poznavanje gravitacijskog vektora koji je samo po sebi nepoznat nego ga treba odrediti. Treba imati u vidu da je opterećenje vrlo veliko.

Kako je postupak namještanja pojačanja opisan u prethodnim odlomcima smatra se nepotrebnim iznositi iznova način kojim se je stiglo do numeričkih vrijednosti pojačanja K_p i K_D , te će biti samo pokazane tablice 4. 4 i 4. 5 uz dijagrame za najzanimljivije slučaje.

Tablica 4. 5 sadržava indikatore koji su dobiveni prilikom ispitivanja odziva za različita derivacijska pojačanja. Tablica 4. 4 jasno prikazuje da treba birati $K_p = 1500$ jer je sudeći prema indikatoru 2 trajno regulacijsko odstupanje uz tu vrijednost pojačanja nula. Ponašanje je krivulja iz dijagrama u slici 4. 4 asimptotsko, iako uz trajno regulacijsko odstupanje. Tablica 4. 5 sadržava indikatore koji su dobiveni prilikom ispitivanja odziva za različita derivacijska pojačanja. Za K_D se na kraju odabrala vrijednosti od $K_D = 1500$ i to zato jer je uzrokovano opterećenje najmanje

Slika 4.4 Dijagramski prikaz odziva na intervalu $K_p = 800...1500$ ($K_I = 0$) uz $K_D = 500$

	K_D	50	100	150	200
	Indikator 1	0.053211	0.058141	0.071325	0.086499
$K_p = 1500$	Indikator 2	23	4.2382	-1.0874	-1.5862
	Indikator 3	1487.3	1326.9	1184.6	1061.8
	K _D	200	400	600	800
	Indikator 1	0.086499	0.1518	0.21871	0.28599
K _p = 1500	Indikator 2	-1.5862	-1.5862	-1.5862	-1.5862
	Indikator 3	1061.8	719.61	524.69	405.99
	K _D	800	1000	1200	1500
	Indikator 1	0.28599	0.35341	0.4209	0.52221
$K_p = 1500$	Indikator 2	-1.5862	-1.5867	-1.5903	-1.6174
	Indikator 3	405.99	328.76	275.46	221.26
	K _D	900	1100	1300	1400
	Indikator 1	0.31969	0.38715	0.45467	0.48843
$K_p = 1500$	Indikator 2	-1.5863	-1.5878	-1.5952	-1.6037
	Indikator 3	363.55	299.83	254.7	236.81

Tablica 4. 5 Indikatori simulacija za promjenjive vrijednosti K_D

Slika 4. 5 Dijagramski prikaz odziva na intervalu $K_D = 800$ do 1500 i $K_P = 1500$, UZ $K_I = 0$

4.4. ZAKLJUČAK

Iz svega navedenog može se zaključiti da je PID regulator bolja opcija od PD regulatora. PD regulator nije uspio dostići zahtijevanu vrijednost stepa na koordinati q_2 , nego je postignut odziv koji asimptotski teži vrijednosti koja je relativno blizu q_2 . Naprezanja u zglobovima robota su visokih iznosa, a brzina odziva je prihvatljivih iznosa. Treba istaknuti da je kod PD regulatora vidljivo trajno regulacijsko odstupanje za koordinatu q_2 . Razlog tomu leži u činjenici da se pomoću PD regulatora ne može ukloniti trajno regulacijsko odstupanja ako postoji gibanje u vertikalnoj ravnini, tj. promjena potencijalne energije.

Pomoću PID regulatora postignuti su vrlo precizni odzivi na zahtijevane step reference. Nema trajnog regulacijskog odstupanja kao što je to slučaj kod PD regulatora. Vidjelo se da se za asimptotske i aperiodske odzive bez prebačaja indikator 2 može koristiti i kao stanovita mjera točnosti odziva, iako je isprva zamišljen kao postotna mjera maksimalnog prebačaja. PID regulator daje preciznije odzive ali uz znatna veća koja dostiži vrijednosti (i do preko 600 Nm).

5. PREDFILTER REFERENTNE POZICIJE

5.1. UVODNO RAZMATRANJE

U prethodnim je poglavljima pokazano kako se pomoću PID regulatora može postići za neka željena vrijednost odziva. Isto tako je vidljivo u dijagramima, u poglavlju četvrtom, da postoje početna trzajna opterećenja na zglobove koja poprimaju visoke iznose. Kako bi otklonili ta naprezanja uvodi se predfilter pozicije. Njime se postiže uklanjanje visokih početnih vrijednosti upravljačke varijable, a odziv ostaje i dalje aperiodski i bez preskoka. Konkretno to znači da se umjesto step reference uvodi nova referenca i to P1 član. Taj je P1 član odziv na step referencu i opisan je jednadžbom (5.4) i to je nova željena vrijednost se označava s \overline{q}_d . Napiše li se izraz (3.11) u sljedećem obliku

$$\boldsymbol{\tau} = -\mathbf{K}_{\mathbf{p}} \boldsymbol{q} \boldsymbol{\sigma} \cdot \mathbf{K}_{\mathbf{D}} \boldsymbol{q} \boldsymbol{\kappa} \cdot \mathbf{K}_{\mathbf{I}} \int_{0}^{t} \boldsymbol{q} \boldsymbol{\sigma} \boldsymbol{\sigma} \boldsymbol{\sigma}$$
(5.1)

i uvrsti li se u njega

$$\mathbf{q} = \left(\mathbf{q} - \overline{\mathbf{q}}_{\mathbf{d}}\right) \tag{5.2}$$

onda je za očekivati kako će se početno trzajno opterećenje otkloniti i tome poboljšati odziv robota. Pogreška \overline{q}_d se dobije iz izraza (5.3)

$$\vec{\mathbf{q}}_{\mathbf{d}}^{\mathbf{x}} = -k\left(\overline{\mathbf{q}}_{\mathbf{d}} - \mathbf{q}_{\mathbf{d}}\right) \tag{5.3}$$

i (5.4), što je Laplaceov transformat od (5.3).

$$\overline{\mathbf{q}}_{\mathbf{d}}(\mathbf{s}) = \frac{k}{s+k} \mathbf{q}_{\mathbf{d}}$$
(5.4)

U gore navedenim izrazima je \mathbf{q}_d vektor željene pozicije (step referenca u slici 5. 2 označena kao \mathbf{q}_d), a $\mathbf{\overline{q}}_d$ je P1 član koji postaje nova referenca, koju se koristi za izračunavanje pogreške u izrazu (5.2). Logično je da će se odstupanje sada smanjiti, a time i prebačaj jer će stvarni odziv

biti P1 član (što je u prijašnjim poglavljima utvrđeno), a željeni odziv je isto tako P1 član. Jasno je da će razlika (pogreška) dvaju P1 članova biti manja od razlike P1 člana i step reference. Gore navedeni izrazi su implementirani u matlab i pomoću istoga su programa dobiveni rezultati koji su opisani u narednom poglavlju, a blok dijagram koji odgovara gore opisanim jednadžbama je dan slikom 5 .1.

Slika 5. 1 Blokovski dijagram filtra brzine

5.2. **REZULTATI SIMULACIJA S PREDFILTROM**

U nastavku su dani numerički rezultati kao i dijagrami za rezultate dobivene u simulaciji za predfilter brzine. Za pojačanja su uzeta ona pojačanja koja su dobivena ranije, dakle, $K_p = 1500$, $K_D = 500 \text{ i} K_I = 1500.$

Slika 5. 2 Odzivi na referencu predfiltra pozicije

Tablica 5. 1 Indikatori za predifiter bizine			
$K_p = 1500$	Indikator 1	0.4039	
$K_D = 500$	Indikator 2	-0.0000	
$K_{I} = 1500$	Indikator 3	61.0435	

F 1 Indikatori za predfilter brzine

Kao što vidimo iz indikatora i dijagrama najveće naprezanje je na drugom zglobu i iznosi 61.0435 Nm, a odzivi su bez prebačaja i vrlo točni. Možemo zaključiti da se je korištenjem predfiltra pozicije uvelike poboljšao odziv sustava i to na način da isti sustav uz jednaka pojačanja ima bitno manja naprezanja u svojim zglobovima.

6. FILTER ZA ESTIMACIJU BRZINE

Do sada je generalnim crtama opisano ponašanje PID regulatora i PID regulatora s i bez predfilterom pozicije. Korištenjem predfiltera pozicije uočava se znatno smanjenje opterećenja zglobova u odnosu na PID regulator koji nema predfilter. Uz predfilter se još može koristiti i filter za estimaciju brzine koji je opisan svojim analitičkim izrazima u jednadžbama (6.1) do (6.3). Kada se govori o filteru za estimaciju brzine misli se na određivanje brzine kroz veličine stanja sustava i to bez izravnog mjerenja brzina. Tako dobivene vrijednosti brzina zamjenjuju mjerene vrijednosti brzina.

Razlog takvomu pristupu (bez izravnog mjerenja brzine) je taj da je za mjerenje brzine potreban senzor brzine. Takav je senzor skup i povećava težinu robotu i nepovoljno utječe na robusnost sustava zbog nepreciznosti mjerenja kod jako velikih i jako malih brzina. S druge strane derivacija pozicije mjerene optičkim enkoderom drastično pojačava šum mjerenja. Zbog toga se primjenjuje filter za estimaciju brzine u obliku P1 dinamičkog člana i upravo njime eliminiralo potrebu za dodatnim mjerenjem brzine, a potiskuje se i visokofrekvencijski šum mjerenja.

6.1. ANALIZA FILTERA ZA ESTIMACIJU BRZINE

U praksi se najčešće provodi estimacija brzine pomoću deriviranja, što je neprihvatljivo jer se time izdiže šum. Zato se uvodi filter za estimaciju brzine kako je opisano u narednim izrazima. Zakon upravljanja je dan izrazom (6.1)

$$\boldsymbol{\tau} = -\mathbf{K}_{\mathbf{p}} \boldsymbol{q} \boldsymbol{\sigma} \cdot A \mathbf{K}_{\mathbf{D}} (\mathbf{z} - \mathbf{q}) - \mathbf{K}_{\mathbf{I}} \int_{0}^{t} \boldsymbol{q} \boldsymbol{\sigma} (\boldsymbol{\sigma}) d\boldsymbol{\sigma}$$
(6.1)

gdje je

$$\mathbf{z} = -A \left(\mathbf{z} \cdot \mathbf{q} \right) \tag{6.2}$$

i

$$\mathbf{\hat{q}} = \mathbf{q} - \mathbf{\hat{q}}_{\mathbf{a}}$$
(6.3)

Pri tome su za *A* uzete redom vrijednosti 10, 50, 100, 200. Gore navedeni izrazi su implementirani u matlab i pomoću istoga su programa dobiveni rezultati koji su opisani u narednom poglavlju.

Slika 6. 1 prikazuje ponašanje odziva RRR robota koji uz predfilter još koristi i filter za estimaciju brzine uz i A= 10. Slika 6. 2 pokazuje odzive uz A=50, dok slika 6. 3 pokazuje odzive za A = 100. Slika 6. 4 pokazuje odzive za A= 200. Tablica 6. 1 prikazuje indikatore za odzive uz korištenje filtra za estimaciju brzine.

Slika 6. 1 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 10

Slika 6. 2 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 50

Slika 6. 3 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 100

Slika 6. 4 Odzivi PID regulatora s filtrom za estimaciju brzine uz A = 200

	<i>A</i> = 10	Indikator 1	0.3266
		Indikator 2	0.0000
		Indikator 3	510.4287
	A = 50	Indikator 1	0.3266
$K_{P} = 1500$		Indikator 2	0.0000
$K_{\rm D} = 500$		Indikator 3	510.4287
$K_I = 1500$	<i>A</i> = 100	Indikator 1	0.3265
1		Indikator 2	0.0000
		Indikator 3	659.0574
		Indikator 1	0.3264
	<i>A</i> = 200	Indikator 2	0.0000
		Indikator 3	674.7999

Tablica 6.1 Indikatori PID regulatora s filterom brzine

U slikama 6. 1 do 6. 4 vidljivo je kako za svako pojačanje A postoje početna vrlo kratkotrajna trzajna opterećenja nakon kojih se opterećenje, a time i naprezanje smanjuje praktički na nulu. Ovdje treba spomenuti da je iznos trzaja u drugom zglobu najveći za sve vrijednost A, a najveći općenito za A = 200. S obzirom se može reći da su odzivi podjednako točni, a ujedno se može i ustvrditi da su sve vrijednosti maksimalnih opterećenja značajna i to bez obzira na iznos konstante A, bira se vrijednost A prema indikatoru 1. Što je indikator 1 manji to je sustav stabilniji.

Kako se javljaju nagli skokovi velikih iznosa početnih vrijednosti momenata pribjegava se saturaciji (ograničavanju unutar zadanih minimalnih i maksimalnih vrijednosti) momenata, što je sadržaj idućeg poglavlja 6.2.

6.2. SATURACIJA MOMENATA

Kada se govori o saturaciji momenata onda se misli na ograničavanje apsolutne vrijednosti momenta na neku maksimalno dozvoljenu vrijednost. Kao što se vidi iz prethodnih dijagrama (slika 6. 1 do slika 6. 4) početne vrijednosti momenata na drugom zglobu poprimaju vrlo velike iznose. Zato je potrebno provesti ograničavanje momenata na neke maksimalno dopustive iznose τ_{max} . Odabralo se je $\tau_{max} = 70$ Nm. Tu se je vrijednosti izabralo heuristički i to na način da su se uvrštavale u programski kod u matlabu vrijednosti $\tau_{max} = 1$, 10, 20, 30, 40, 50, 60 i 70. Na taj način se je utvrdilo da vrijednost od 70 daje aperiodski i asimptotski odziv. Ne ide se na veće vrijednosti jer je u interesu da opterećenje na zglobove bude što manje i upravo vrijednost od $\tau_{max} = 70$ Nm daje takav heuristički optimum. Matematički opis saturacije dan je izrazom (6.4). koji kaže da τ_{max} treba pomnožiti s funkcijom koja ima oblik kao na slici 6. 5.

$$\tau = \tau_{max} \cdot tanh(x) \tag{6.4}$$

Pošto ovakva funkcija nije standardna funkcija (kao npr. sinus ili kosinus) ona nije najpogodnija za računanje. Zato će se funkcija iz slike 6. 5 aproksimirati funkcijom tangens hiperbolni i to na način kako prikazuje jednadžba (6.4), a grafički je prikaz dan slikom 6. 6.

Slika 6. 6 Tangens hiperbolni

Pošto tangens hiperbolni ide od -1 do 1 treba ga pomnožiti s τ_{max} kako bi se dobio oblik funkcije kao što je prikazano u slici 6. 7. Matematički je to opisano u jednadžbi (6.4)

Slika 6. 7 Aproksimacija korištena u svrhu saturacije upravljačkog momenta

Tablica 6. 1 prikazuje indikatore koji su dobiveni iz matlaba i to za vrijednosti A = 200 i $\tau_{max} = 70$ Nm. Slika 6. 8 prikazuje dijagrame odziva u kojima je korišten filter pozicije, filter za estimaciju brzine te saturacija momenata. Vidljivo je kako su zahvaljujući saturaciji postignuta izrazita smanjenja momenata, što se i očekivalo. Isto se vidi da maksimalno opterećenje na zglobove ne iznosi više od 70 Nm kako je i predviđeno saturacijskom funkcijom tanh(x).

Tablica 6	5.2	
-----------	-----	--

A = 200 $\tau_{max} = 70 \text{ Nm}$	Indikator 1	0.4286
	Indikator 2	-0.0000
-max · · · · ·	Indikator 3	61.0435

Slika 6. 8 Odzivi uz $A{=}\,200$ i $\tau_{\rm max}{=}\,70$ Nm

7. PID REGULATOR S KLIZNIM REŽIMOM RADA

7.1. UVODNO RAZMATRANJE

Dosada razmatrani PID regulatori nisu mogli slijediti vremenski promjenjivu referencu pozicije, tj. putanju u prostoru. U ovome je poglavlju pokazano kako se uz jednostavnu modifikaciju klasičnog PID regulatora postiže to da robot (u našem slučaju s 3 SSG) prati zadanu trajektoriju. Takav se PID regulator onda naziva regulator s kliznim režimom rada (*engl. Sliding Mode PID*)

Ako se razmotri regulacijska zakonitost P-regulatora koja kaže sljedeće:

$$u = K_p e \tag{7.1}$$

Pri tome je u ulaz sustava. Pogreška e_0 iznosi

$$e_0 = \frac{1}{1 + K_P}$$
(7.2)

Kada e_0 teži u 0, tada K_p teži u ∞ . Doda li se izrazu (7.1) Rsign(e) kako prikazuje izraz (7.3) dobije se P-regulator s kliznim režimom rada.

$$u = K_p e + Rsign(e) \tag{7.3}$$

R je konstanta dovoljno velika da omogući slijeđenje trajektorije. Pri tome vrijedi

$$sign(x) = \begin{cases} 1; x > 0 \\ -1; x < 0 \\ 0; x = 0 \end{cases}$$
(7.4)

Naime, kada se dogodi da e postane različit od nule (što znači da postoji odstupanja od zahtijevane referentne putanje) onda Rsign(e) uzrokuje da upravljačka varijabla djeluje na način da poništava nastalu pogrešku. Naravno da je takav proces kontinuiran i zbog toga uzrokuje

velike oscilacije upravljačke varijable. Te oscilacije dovele bi do ubrzanog trošenja mehaničkih dijelova robota i praktički je nemoguće robotski sustav pustiti u dugotrajnom režimu rada pod takvim uvjetima.

Stoga, se proširuje izraz (7.3) kako to prikazuje jednadžba (7.5) i dobije se zakon upravljanja za PID regulator s kliznim režimom. Integracijski dio jednadžbe (7.5) ublažava oscilacije upravljačke varijable koje nastaju uslijed djelovanja derivacijskog člana. To nije samo poželjno nego je i neminovno je r se u realnim eksploatacijskim uvjetima ne može očekivati da robotska ruka podnese dugotrajno tu vrstu opterećenja.

$$u = K_p e + K_I z \tag{7.5}$$

i

$$\mathbf{x} = e + Rsign(e) \tag{7.6}$$

Dosadašnji izrazi iz poglavlja 7. su se odnosili na opći oblik upravljačkih zakonitosti. Za konkretan primjer RRR robota vrijede sljedeći izrazi koji su od sada nadalje dani u matričnom obliku. Treba još spomenuti da je uobičajena oznaka za pogrešku u robotici s, a ne e. U prethodnim se odlomcima koristila oznaka e i to u svrhu pojašnjenja opće problematike vezane uz klizni režim rada.

$$\mathbf{e} = \mathbf{s} \tag{7.7}$$

Regulacijska pogreška pozicije je sada

$$\mathbf{q} = \mathbf{q} - \mathbf{q}_{\mathbf{d}}(t) \tag{7.8}$$

i

$$\mathbf{\hat{q}} = \mathbf{\hat{q}} - \mathbf{\hat{q}}_{\mathbf{d}} \left(t \right) \tag{7.9}$$

dok je

$$\mathbf{s} = \mathbf{a} + \alpha \mathbf{a} + \alpha \mathbf{a} = 1$$
 (7.10)

Upravljačka zakonitost RRR robota glasi

$$\boldsymbol{\tau} = -\mathbf{K}_{\mathbf{P}}\mathbf{s} - \mathbf{K}_{\mathbf{I}}\mathbf{z} \tag{7.11}$$

i

$$\mathbf{\hat{z}} = \mathbf{s} + R \mathbf{sign}(\mathbf{s}) \tag{7.11}$$

7.2. REZULTATI SIMULACIJA

U prethodnom je poglavlju 7. 1 je teorijski pojašnjeno što je potrebno za modifikaciju PID regulatora s kliznom režimom rada. Iznesene su opće jednadžbe i jednadžbe koje se odnose na specifično na RRR robota.

U narednim su odlomcima prikazani rezultati simulacija PID regulatora s kliznim režimom rada (*engl. Sliding Mode PID*). To znači da su teorijske postavke iz prethodnoga poglavlja implementirane u matlab i da su pomoću tog programa dobiveni dijagrami u kojima je prikazano slijeđenje vremenski promjenjive referentne pozicije, tj. putanje. Za zadanu putanju je odabrana funkcija sinus.

Slika 7. 1 Odstupanje tijekom slijeđenja putanje za R = 0

Na slici 7. 1 je prikazano slijeđenje trajektorije pomoću običnog PID regulatora (R = 0). Vidi se da robot reguliran PID regulatorom slijedi trajektoriju uz pogrešku reda 10^{-2} i nešto manje. Dijagrami u donjem redu slike 7.1 su u logaritamskom mjerilu kako bi se dobilo na preglednosti. Promatrajući sliku 7. 2 vidi se da postoji veliko inicijalno opterećenje. Povećano inicijalno opterećenje je uzrokovano derivacijskim članom zakona upravljanja. Zadana putanja je funkcija sinus koja deriviranjem postaje kosinus. Pošto je sin(0) = 0, a cos(0) = 1 naprezanje u zglobovima bit će veliko jer je pozicija nula, a zahtjev za postizanjem brzine maksimalan.

Slika 7. 2 Upravljačka veličina na sva tri zgloba tijekom slijeđenja trajektorije za R = 0

Kako bi se povećano opterećenje uklonilo pribjegava se saturaciji upravljačke veličine. Za ograničenje na prvom zglobu je odabrano ograničenje od 10 Nm, na drugom je zlobu maksimalno opterećenje ograničeno na 100 Nm, a na trećoj je koordinati ograničenje postavljeno na 20 Nm.

Slika 7. 3 Saturirane upravljačke veličine tijekom slijeđenja trajektorije za R = 0

Saturacija je smanjila naprezanja u zglobovima ali nije poboljšala točnost slijeđenja putanje. Ako se želi poboljšati performanse tijekom slijeđenja putanje onda je potrebno umjesto običnog PID regulatora koristiti PID regulator s kliznim režimom rada. Takav regulator ima konstantu *R* različitu od nule i izabrana je vrijednost R = 50. Slijeđenje trajektorije je prikazano na slici 7. 4 i uočljivo je znatno poboljšanje u smislu točnosti slijeđenja. Red veličine odstupanja od zadane vremenski promjenjive reference nije više 10^{-2} nego 10^{-6} pa čak i manje. Saturirani iznosi upravljačkih veličina prikazani su slikom 7. 5. Vidljivo je da se iznosi upravljačkih veličina ne mijenjaju promjenom konstante *R*.

Slika 7. 4 Odstupanje tijekom slijeđenja putanje za R = 50

Slika 7. 5 Saturirane vrijednosti upravljačkih veličina uz R=50

8. ZAKLJUČAK

Na kraju se može zaključiti da su PID regulatori sposobni nositi se sa zahtjevima koji se javljaju u industriji. U poglavlju 2. navedena su četiri uvjeta koja regulirani robotski sustav mora zadovoljavati, a to su stabilnost, robusnost, optimiziranost i mogućnost praćenja vremenski promjenjive reference, tj. putanje.

Kako klasični PID regulator nije u mogućnosti pratiti putanju što je u modernoj industriji nerijetko potrebno, pribjegava se modifikaciji klasičnog PID regulatora kako bi se dobio PID regulator s kliznim režimom rada (*engl. Sliding Mode PID*). Takav PID regulator može pratiti vremenski promjenjivu referencu pozicije i to uz vrlo visoku točnost.

PID regulatori su robusni sustavi što je vidljivo iz simulacijskih rezultata i to u onim slučajevima gdje postoje velika inicijalna opterećenja na zglobove robota. Ta opterećenja PID regulatori, kako klasični (uz pravilan izbor pojačanja), tako i PID regulatori s kliznim režimom rada, uklanjaju u vremenskim rasponima koji se mjere desetinkama sekunda.

Klasični PID regulator (uz pravilan odabir pojačanja) postiže asimptotsku stabilizaciju bez prebačaja. Za takve se performanse plaća cijena visokih naprezanja u zglobovima robota. Kako bi se ta naprezanja smanjila pribjeglo se je filtriranju pozicije što je imalo pozitivan učinak u smislu znatnog smanjenja naprezanja u zglobovima robota. Kako se je težilo daljnjem smanjenju naprezanja uveo se filter za estimaciju brzine koji je uz izvrsne rezultate u smislu minimizacije naprezanja imao i jednu negativnu osobinu, a to je veliko inicijalno opterećenje koje je imalo svojstvo izmjeničnog dinamičkog naprezanja u vrlo kratkom vremenskom rasponu od 0.1 do 0.2 sekunde. Da bi se izbjeglo to inicijalno trzajno opterećenje pribjeglo se saturaciji momenta u zglobovima čime bi se u uvjetima eksploatacije produžio radni vijek robota. Kod PID regulatora s kliznim režimom rada pojavio se je sličan problem i zato se i u tom slučaju pribjeglo saturaciji momenta. Može se reći da PID regulatori u tom smislu zadovoljavaju i kriterij optimizacije jer je moguće uz neke manje modifikacije smanjiti naprezanja u zglobovima robotske ruke na vrlo prihvatljive iznose.

Sama mogućnost da se pomoću PID regulatora regulira putanja robota s 3 SSG ukazuje na mogućnost univerzalne primjene PID regulatora. Upravo zato jer su robusni i zato jer su relativno jednostavni za implementaciju pronalaze široku primjenu u svim industrijskim granama gdje se javlja potreba za regulacijom. Uz to se uporabom PID regulatora može sniziti cijena

regulacijskog sustava, a primjer za to nalazimo u činjenici da se uz korištenje PID regulatora izbjeglo mjerenje brzine unutarnjih koordinata robota. Zbog svega navedenog PID regulator je u prošlosti i danas najčešći izbor u industriji gdje se koriste regulacijski sustavi.

LITERATURA

- [1] Žilić T., Kasač J., Essert M., Šitum Ž., *Performance Comparison of Different Control Algorithms for Robot Manipulators*, Hrvatska znanstvena bibliografija, bibliografska jedinica 336564, rad u postupku objavljivanja i prihvaćen, http://bib.irb.hr/prikazi-rad?&rad=336564, Izvornik: strojarstvo (0562-1887) (2010)
- [2] Kasač J., Analiza stabilnosti nelinearnih sustava vođenih analitičkim neizrazitim regulatorom, doktorski rad, SVEUČILIŠTE U ZAGREBU, Fakultet strojarstva i brodogradnje, Zagreb, 2005., od 570 do 576
- [3] Crneković, M., Industrijski roboti, SVEUČILIŠTE U ZAGREBU, Fakultet strojarstva i brodogradnje
- [4] Kelly, R., Santibáńez, V. Loría A., Control of Robot Manipulators in Joint Space, Springer 2005.
- [5] Kasać, J., Novaković, B., Majetić, D., Brezak, D., *Passive Finite-Dimensional Repetitive Control of Robot Manipulators*, IEEE Transactions on Control Systems Technology, VOL. 16, NO. 3, svibanj 2008., od 570 do 576
- [6] Parra-Vega, V., Arimoto, S. Nonlinear PID Control with Sliding Modes for Tracking of Robot Manipulators, Proceedings of the 2001 IEEE International Conference for Control Application, 5. – 7. rujna, Mexico City, Meksiko, od 351 do 356
- [7] Chao-Chung Peng, Chi-Li Chen, Dynamic controller design for a class nonlinear uncertain systems subject to time varying disturbances, Studeni 2008. Nonlinear Dyn DOI 0.1007/s11071-008-9451-2
- [8] Xian B., Dawson D. M., Queiroz, Chan J., A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems, IEEE Transaction on Automatic Control, VOL. 49, NO. 7, srpanj 2004., od 1206 do 1211

PRILOG

NAMJEŠTANJE PROPORCIONALNOG POJAČANJA ZA PID REGULATOR

 $K_I = 500, K_D = 350$

 $K_I = 500, K_D = 350$

NAMJEŠTANJE DERIVACIJSKOG POJAČANJA ZA PID REGULATOR

 $K_I = 350, K_p = 1500$

 $K_I = 350, K_P = 1500$

NAMJEŠTANJE INTEGRACIJSKOG POJAČANJA ZA PID REGULATOR

 $K_p = 1500, K_D = 500$

NAMJEŠTANJE DERIVACIJSKOG POJAČANJA ZA PD REGULATOR

PROGRAMSKI KODOVI

PID regulator i pripadajući robot:

PID regulator:

% Main.m% PID controller for robot manipulator% 3-DOF spatial manipulator

clc; clear all;

TOL = 1e-6;	%tocnost integracije	
T = 8.0;		% vrijeme simulacije
DT=0.02;		%korak integracije

global KP1 KD1 KI1 KP2 KD2 KI2 KP3 KD3 KI3 K I1 m1 m2 m3 M 11 l2 l3 g alpha alpha1 kD1 xd1 xd2 xd3

%------Parametri regulatora-----%

alpha1=1.0; alpha=3.0; kD1 = 0;%------Robots parameter-PUMA 560-----% g = 9.8; I1 = 0.35;m1 = 0.0;m2 = 17.4;m3 = 4.8; $M = 0.5; \ \%M = m4 + m5 + m6$ 11 = 0.0; 12 = 0.4318;13 = 0.4331;%----Zeljeno referentno stanje robota-----% xd1=1; xd2=1; xd3=1; %-----Robots constants----------% Ndof = 3;% broj stupnjeva slobode gibanja Nrob = 2*Ndof; % red dinamickog modela robota (broj Ndof*2) $kg = Ndof^*g^*((1/2)^*m2^*l2 + m3^*(l2 + (1/2)^*l3) + M^*(l2 + 13));$ $kC1 = 2*Ndof^{2}((1/3)*m2*l2^{2} + m3*(l2^{2} + l2*l3 + (1/3)*l3^{2}) + M*(l2 + l3)^{2});$ $kM1 = 2*Ndof^{2*}((1/3)*m2*l2*l2 + (l2^{2} + l2*l3 + (1/3)*l3^{2})*m2 + M*(l2 + l3)^{2});$ $kM2 = Ndof^{2}(m3*12*12 + 2*M*12*12);$ kM = max(kM1, kM2);%------ Integracija dinamièkog modela za razlicite parametre-----% % K_P=[50 100 150 200]; % K_P=[200 400 600 800]; % K_P=[800 1000 1200 1500]; % K_P=[900 1100 1300 1400]; % K_D=[50 100 150 200]; % K_D=[200 400 600 800]; % K_D=[800 1000 1200 1500]; % K_D=[900 1100 1300 1400]; % K_I=[50 100 150 200]; % K_I=[200 400 600 800]; % K_I=[800 1000 1200 1500]; % K_I=[900 1100 1300 1400]; % K_P = 1500;

X0=zeros(18,1);

tT = 0:DT:T;

for II=1:1 $KP1 = K_P(JJ);$ KP2 = KP1; KP3 = KP1;KD1 = 500; KD2 = KD1; KD3 = KD1;KI1 = 1500; KI2 = KI1; KI3 = KI1; options = odeset('RelTol',TOL,'AbsTol',TOL); [t,y] = ode15S('Robot',tT,X0,options); Y1out(:, JJ) = y(:,1);Y3out(:, JJ) = y(:,3);Y5out(:, JJ) = y(:,5); Y13(:,JJ)= y(:,13); Y14(:,JJ)= y(:,14); Y15(:,JJ)= y(:,15); U1out(:, JJ) = diff(y(:, 10))./diff(t);U2out(:, JJ) = diff(y(:,11))./diff(t); U3out(:, JJ) = diff(y(:,12))./diff(t); end % Xd01=xd1*ones(length(t),1); Xd02=xd2*ones(length(t),1); Xd03=xd3*ones(length(t),1); tu=t(1:(length(t)-1)); %------% qMAX=1.2; figure(1) % KP subplot(231), plot(t,Y1out(:,1),'k', t,Y1out(:,2),'--k', t,Y1out(:,3),'-.k', t,Y1out(:,4),':k', t,Xd01,'r','linewidth',2.5), xlabel('t, s', 'FontSize', 18, 'FontName', 'Times'), ylabel('q_1, rad', 'FontSize', 18), axis([0 T 0 qMAX]) set(gca,'fontsize',18,'FontName','Times'), legend('K_P=50', 'K_P=100', 'K_P=150', 'K_P=200', 'q_{d1}, rad',4), set(findobj(gcf, tag', legend'), 'fontsize', 18, 'FontName', 'Times') subplot(231), plot(t,Y1out(:,1),'k', t,Y1out(:,2),'--k', t,Y1out(:,3),'-.k', t,Y1out(:,4),':k', t,Xd01,'r','linewidth',2.5), xlabel('t, s', 'FontSize', 18, 'FontName', 'Times'), ylabel('q_1, rad', 'FontSize', 18), axis([0 T 0 qMAX]) set(gca,'fontsize',18,'FontName','Times'), legend('K_P=200', 'K_P=400', 'K_P=600', 'K_P=800', 'q_{d1}, rad',4), set(findobj(gcf,'tag','legend'),'fontsize',18,'FontName','Times') subplot(231), plot(t,Y1out(:,1),'k', t,Y1out(:,2),'--k', t,Y1out(:,3),'-.k', t,Y1out(:,4),':k', t,Xd01,'r','linewidth',2.5), xlabel('t, s', 'FontSize', 18, 'FontName', 'Times'), ylabel('q_1, rad', 'FontSize', 18), axis([0 T 0 qMAX]) set(gca,'fontsize',18,'FontName','Times'), legend('K_P=800', 'K_P=1000', 'K_P=1200', 'K_P=1500', 'q_{d1}, rad',4), set(findobj(gcf, tag', legend'), fontsize', 18, FontName', 'Times') subplot(231), plot(t,Y1out(:,1),'k', t,Y1out(:,2),'--k', t,Y1out(:,3),'-.k', t,Y1out(:,4),':k', t,Xd01,'r','linewidth',2.5), xlabel('t, s','FontSize',18,'FontName','Times'), ylabel('q_1, rad','FontSize',18), axis([0 T 0 qMAX]) set(gca,'fontsize',18,'FontName','Times'). legend('K_P=900', 'K_P=1100', 'K_P=1300', 'K_P=1400', 'q_{d1}, rad',4), set(findobj(gcf, tag', legend'), fontsize', 18, FontName', Times') subplot(234), plot(tu,U1out(:,1),'k', tu,U1out(:,2),'--k', tu,U1out(:,3),'-.k', tu,U1out(:,4),':k', 'linewidth',2.5), xlabel('t, s', FontSize', 10, 'FontName', 'Times'), ylabel('u_1, Nm', FontSize', 10), set(gca,'fontsize',10,'FontName','Times'), legend('K_P=800', 'K_P=1000', 'K_P=1200', 'K_P=1500', 'q_{d1}, (rad)',4), set(findobj(gcf,'tag','legend'),'fontsize',10,'FontName','Times') subplot(235), plot(tu,U2out(:,1),'k', tu,U2out(:,2),'--k', tu,U2out(:,3),'-.k', tu,U2out(:,4),':k', 'linewidth',2.5), xlabel('t, s','FontSize',10,'FontName','Times'), ylabel('u_2, Nm','FontSize',10), set(gca,'fontsize',10,'FontName','Times'), subplot(236), plot(tu,U3out(:,1),'k', tu,U3out(:,2),'--k', tu,U3out(:,3),'-.k', tu,U3out(:,4),':k', 'linewidth',2.5), xlabel('t, s','FontSize',10,'FontName','Times'), ylabel('u_3, Nm','FontSize',10), set(gca,'fontsize',10,'FontName','Times'), % PREDFILTER / ESTIMACIJA BRZINE subplot(231), plot(t, Y1out(:,1),'k', t, Xd03,'r', t, Y13, 'b', 'linewidth',2.5), xlabel('t, s','FontSize',10,'FontName','Times'), ylabel('q_1, rad','FontSize',10), axis([0 T 0 qMAX]) set(gca,'fontsize',10,'FontName','Times'),

 $legend('q_{1}, rad (stvarna pozicija uz estimaciju brzine)', 'q_{d}, rad (step referenca)', 'q_{d1} rad (filtrirana pozicija) ', 4), set(findobj(gcf, 'tag', 'legend'), 'fontsize', 10, 'FontName', 'Times')$

subplot(236), plot(tu,U3out(:,1),'k', 'linewidth',2.5), xlabel('t, s',FontSize',10,'FontName',Times'), ylabel('u_3, Nm','FontSize',10), set(gca,'fontsize',10,'FontName','Times'),

%-----EndFigure-----%

%------Indikatori-----

for JJ=1:1

```
Ind1(JJ) = (ISE((Y1out(:,JJ)-Xd01),T) + ISE((Y3out(:,JJ)-Xd02),T) + ISE((Y5out(:,JJ)-Xd03),T))/3; % ISE kriterij: \int(x*x dx)
Ind2(JJ) = 100*(max(Y1out(:,JJ)-Xd01)/xd1 + max(Y3out(:,JJ)-Xd02)/xd2 + max(Y5out(:,JJ)-Xd03)/xd3)/3; % maksimalni preskok (u
postocima)
Ind3(JJ) = max([max(U1out(:,JJ)),max(U2out(:,JJ)),max(U3out(:,JJ))]); % maksimalna vrijednost momenata (Nm)
```

end

save Ind1 Ind2 Ind3

Robot 3 SSG:

% Robot.m % 3-DOF spatial manipulator function dy = Robot(t,y)global KP1 KD1 KI1 KP2 KD2 KI2 KP3 KD3 KI3 K I1 m1 m2 m3 M 11 12 13 g alpha alpha1 kD1 xd1 xd2 xd3 dy = zeros(18,1); % a column vector %_-----%dx1 = y(1) - y(13); % ddx 1 = y(2);% dx2 = y(3) - y(14);% ddx2= y(4); % dx3 = y(5) - y(15);% ddx3= y(6); dx1 = y(1) - xd1;ddx1 = y(2); $dx^2 = y(3) - xd^2;$ ddx2 = y(4);dx3 = y(5) - xd3;ddx3= y(6); %------% $absdx = sqrt(dx1^{2} + dx2^{2} + dx3^{2});$ u1 = -KP1*dx1 - (KD1+kD1*absdx)*ddx1 - KI1*y(7);u2 = - KP2*dx2 - (KD2+kD1*absdx)*ddx2 - KI2*y(8); u3 = - KP3*dx3 - (KD3+kD1*absdx)*ddx3 - KI3*y(9); A = 10;A = 50; A = 100; A = 200; $ESTdx1 = -A^{*}(y(16)-dx1);$ u1 = -KP1*dx1 - (KD1+kD1*absdx)*ESTdx1 - KI1*y(7); $ESTdx2 = -A^{*}(y(17)-dx2);$ u2 = - KP1*dx2 - (KD1+kD1*absdx)*ESTdx2 - KI2*y(8);
$$\begin{split} &ESTdx3 = -A^{*}(y(18) - dx3); \\ &u3 = - KP1^{*}dx3 - (KD1 + kD1^{*}absdx)^{*}ESTdx3 - KI3^{*}y(9); \end{split}$$
%----SATURACIJA-----% Umax = 70;u1p = -KP1*dx1 - (KD1+kD1*absdx)*ESTdx1 - KI1*y(7);u2p = -KP1*dx2 - (KD1+kD1*absdx)*ESTdx2 - KI2*y(8);u3p = -KP1*dx3 - (KD1+kD1*absdx)*ESTdx3 - KI3*y(9);u1=Umax*tanh(u1p/Umax); u2=Umax*tanh(u2p/Umax); u3=Umax*tanh(u3p/Umax); U = [u1; u2; u3]; %-----Robot 3-DOF-----% q1=y(1); q2=y(3); q3=y(5); dq1=y(2); dq2=y(4); dq3=y(6);

s2=sin(q2); s3=sin(q3); s23=sin(q2+q3); c2=cos(q2); c3=cos(q3); c23=cos(q2+q3);

```
%--Inertia matrix:
m11 = I1 + (1/3)*m2*l2*l2*s2*s2 + m2*(l2*l2*s2*s2 + l2*l3*s2*s23 + (1/3)*l3*l3*s23*s23) + M*(l2*s2 + l3*s23)^{2};
m12 = 0; m21 = m12;
m13 = 0; m31 = m13;
m22 = (1/3)*m2*l2^{2} + m3*(l2^{2} + l2*l3*c3 + (1/3)*l3^{2}) + M*(l2^{2} + 2*l2*l3*c3 + l3^{2});
m23 = (1/2)*m3*(12*13*c3 + (2/3)*13^2) + M*13*(12*c3 + 13); m32=m23;
m33 = (1/3)*m3*l3^2 + M*l3^2;
H = [m11 m12 m13; m21 m22 m23; m31 m32 m33];
%--Christoffel tenzors:
D112 = (2/3)*m2*l2*l2*s2*c2 + m3*(2*l2*l2*s2*c2 + l2*l3*(c2*s23 + s2*c23) + (2/3)*l3*2*s23*c23) + 2*M*(l2*s2 + l3*s23)*(l2*c2 + l2*l3*s23)*(l2*c2 + l2*c2)*(l2*c2 + l2*c2)*(l2*c2 + l2*c2)*(l2*c2 + l2*c2)*(l2*c2 + l2*c2)*(l2*c2 + l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(l2*c2)*(
13*c23);
D113 = m3*(l2*l3*s2*c23 + (2/3)*l3^2*s23*c23) + 2*M*l3*c23*(l2*s2 + l3*s23);
D211 = -(1/2)*D112;
D223 = -12*13*s3*(m3 + 2*M);
D233 = -12*13*s3*((1/3)*m3 + M);
D311 = (1/2)*D113;
D322 = -(1/2)*D223;
%--Coriolis vector:
c1 = D112*dq1*dq2 + D113*dq1*dq3;
c2 = D211*dq1^{2} + D223*dq2*dq3 + D233*dq3^{2};
c3 = D311*dq1^{2} + D322*dq2^{2};
C = [c1; c2; c3];
%--Gravity vector:
g1 = 0;
g_2 = g^*((1/2)*m2*l2*s2 + m3*(l2*s2 + (1/2)*l3*s23) + M^*(l2*s2 + l3*s23));
g_3 = g^*((1/2)*m_3*13*s_23 + M*13*s_23);
G = [g1; g2; g3];
%--Inverse inertia matrix:
InvM = inv(H);
%--(Inverse inertia matrix)*(Coriolis vector):
InvMC = InvM*C;
%--(Inverse inertia matrix)*(Gravity vector):
InvMG = InvM*G;
%--(Inverse inertia matrix)*(control vector):
InvMU = InvM*U;
%----Dinamika 2-DOF robota s NPID regulatorom u povratnoj vezi-----%
dy(1) = y(2);
dy(2) = -InvMC(1) - InvMG(1) + InvMU(1);
dy(3) = y(4);
dy(4) = -InvMC(2) - InvMG(2) + InvMU(2);
dy(5) = y(6);
dy(6) = -InvMC(3) - InvMG(3) + InvMU(3);
%---Integratori PID controllera-----%
dy(7) = alpha1*ddx1+alpha*dx1;
dy(8) = alpha1*ddx2+alpha*dx2;
dy(9) = alpha1*ddx3+alpha*dx3;
%---upravljacke varijable za izlaz-----%
dy(10) = u1;
dy(11) = u2;
dy(12) = u3;
%filter--
                                                                                                                                                -%
k=3;
dy(13) = -k^*(y(13)-xd1);
                                                        %d(qd1)/dt; qd1(s)
dy(14) = -k^*(y(14)-xd2);
```

% filter brzine-----%

dy(16) = ESTdx1; dy(17) = ESTdx2; dy(18) = ESTdx3;

PID regulator s kliznim režimom i pripadajući robot:

PID regulator s kliznim režimom:

% Robot m % 3-DOF spatial manipulator function dy = Robot(t,y)global KP1 KD1 KI1 KP2 KD2 KI2 KP3 KD3 KI3 K I1 m1 m2 m3 M 11 12 13 g alpha alpha1 kD1 xd1 xd2 xd3 dy = zeros(18,1); % a column vector %----dx1 = y(1) - y(13);ddx1 = y(2);dx2 = y(3) - y(14);ddx2 = y(4);dx3 = y(5) - y(15);ddx3 = y(6);% % dx1 = y(1) - xd1;% ddx1= y(2); % dx2 = y(3) - xd2;% ddx2= y(4); % dx3 = y(5) - xd3;% ddx3= y(6); %------% $absdx = sqrt(dx1^{2} + dx2^{2} + dx3^{2});$ u1 = -KP1*dx1 - (KD1+kD1*absdx)*ddx1 - KI1*y(7);u2 = - KP2*dx2 - (KD2+kD1*absdx)*ddx2 - KI2*y(8); u3 = -KP3*dx3 - (KD3+kD1*absdx)*ddx3 - KI3*y(9);A = 10; A = 50;A = 100;A = 200; $ESTdx1 = -A^{*}(y(16)-dx1);$ u1 = - KP1*dx1 - (KD1+kD1*absdx)*ESTdx1 - KI1*y(7); $ESTdx2 = -A^{*}(y(17)-dx2);$ u2 = -KP1*dx2 - (KD1+kD1*absdx)*ESTdx2 - KI2*y(8); $ESTdx3 = -A^{*}(y(18)-dx3);$ u3 = -KP1*dx3 - (KD1+kD1*absdx)*ESTdx3 - KI3*y(9);%-----SATURACIJA------% Umax = 70;u1p = - KP1*dx1 - (KD1+kD1*absdx)*ESTdx1 - KI1*y(7); u2p = - KP1*dx2 - (KD1+kD1*absdx)*ESTdx2 - KI2*y(8); $u_{3p}^{2} = -KP1*dx_{3} - (KD1+kD1*absdx)*ESTdx_{3} - KI_{3}*y(9);$ u1=Umax*tanh(u1p/Umax); u2=Umax*tanh(u2p/Umax); u3=Umax*tanh(u3p/Umax); U = [u1; u2; u3];%------Robot 3-DOF------% q1=y(1); q2=y(3); q3=y(5); dq1=y(2); dq2=y(4); dq3=y(6);
```
s2=sin(q2); s3=sin(q3); s23=sin(q2+q3);
c2=cos(q2); c3=cos(q3); c23=cos(q2+q3);
```

```
%--Christoffel tenzors:
13*c23);
D113 = m3*(l2*l3*s2*c23 + (2/3)*l3^2*s23*c23) + 2*M*l3*c23*(l2*s2 + l3*s23);
D211 = -(1/2)*D112;
D223 = -12*13*s3*(m3 + 2*M);
D233 = -12*13*s3*((1/3)*m3 + M);
D311 = (1/2)*D113;
D322 = -(1/2)*D223;
%--Coriolis vector:
c1 = D112*dq1*dq2 + D113*dq1*dq3;
c2 = D211*dq1^{2} + D223*dq2*dq3 + D233*dq3^{2};
c3 = D311*dq1^{2} + D322*dq2^{2};
C = [c1; c2; c3];
%--Gravity vector:
g1 = 0;
g2 = g^*((1/2)^*m2^*l2^*s2 + m3^*(l2^*s2 + (1/2)^*l3^*s23) + M^*(l2^*s2 + l3^*s23));
g_3 = g^*((1/2)^*m_3*13*s_23 + M*13*s_23);
G = [g1; g2; g3];
%--Inverse inertia matrix:
InvM = inv(H);
%--(Inverse inertia matrix)*(Coriolis vector):
InvMC = InvM*C;
%--(Inverse inertia matrix)*(Gravity vector):
InvMG = InvM*G;
%--(Inverse inertia matrix)*(control vector):
InvMU = InvM*U;
%----Dinamika 2-DOF robota s NPID regulatorom u povratnoj vezi-----%
dy(1) = y(2);
dy(2) = -InvMC(1) - InvMG(1) + InvMU(1);
dy(3) = y(4);
dy(4) = -InvMC(2) - InvMG(2) + InvMU(2);
dy(5) = y(6);
dy(6) = -InvMC(3) - InvMG(3) + InvMU(3);
%---Integratori PID controllera-----%
dy(7) = alpha1*ddx1+alpha*dx1;
dy(8) = alpha1*ddx2+alpha*dx2;
dy(9) = alpha1*ddx3+alpha*dx3;
%---upravljacke varijable za izlaz-----%
dy(10) = u1;
dy(11) = u2;
dy(12) = u3;
% filter-----%
```

% filter brzine-----%

dy(16) = ESTdx1; dy(17) = ESTdx2; dy(18) = ESTdx3;

Robot 3 SSG:

% Robot.m % 3-DOF spatial manipulator function dy = Robot(t,y)global KP1 KD1 KI1 KP2 KD2 KI2 KP3 KD3 KI3 K I1 m1 m2 m3 M 11 12 13 g alpha R Kth Am InS dy = zeros(12,1); % a column vector %_----xd1 = Am*sin(t);xd2 = Am*sin(t);xd3 = Am*sin(t);dxd1 = Am*cos(t);dxd2 = Am*cos(t);dxd3 = Am*cos(t);dx1 = y(1) - xd1;ddx1 = y(2) - dxd1; $dx^2 = y(3) - xd^2;$ ddx2 = y(4) - dxd2;dx3 = y(5) - xd3;ddx3 = y(6) - dxd3;sss1 = ddx1 + alpha*dx1;sss2 = ddx2 + alpha*dx2;sss3 = ddx3 + alpha*dx3;%------% u1 = - KP1*sss1 - InS*KI1*y(7) - (1-InS)*KI1*R*tanh(Kth*sss1); u2 = - KP2*sss2 - InS*KI2*y(8) - (1-InS)*KI2*R*tanh(Kth*sss2); u3 = - KP3*sss3 - InS*KI3*y(9) - (1-InS)*KI3*R*tanh(Kth*sss3); U = [u1; u2; u3];%------Robot 3-DOF------% q1=y(1); q2=y(3); q3=y(5); dq1=y(2); dq2=y(4); dq3=y(6); s2=sin(q2); s3=sin(q3); s23=sin(q2+q3); c2=cos(q2); c3=cos(q3); c23=cos(q2+q3); %--Inertia matrix: m11 = I1 + (1/3)*m2*l2*l2*s2*s2 + m2*(l2*l2*s2*s2 + l2*l3*s2*s23 + (1/3)*l3*l3*s23*s23) + M*(l2*s2 + l3*s23)*2;m12 = 0; m21 = m12;m13 = 0; m31 = m13; $m22 = (1/3)*m2*l2^{2} + m3*(l2^{2} + l2*l3*c3 + (1/3)*l3^{2}) + M*(l2^{2} + 2*l2*l3*c3 + l3^{2});$ $m23 = (1/2)*m3*(12*13*c3 + (2/3)*13^2) + M*13*(12*c3 + 13); m32=m23;$ $m33 = (1/3)*m3*l3^2 + M*l3^2;$ H = [m11 m12 m13; m21 m22 m23; m31 m32 m33]; %--Christoffel tenzors: D112 = (2/3)*m2*12*12*s2*c2 + m3*(2*12*12*s2*c2 + 12*13*(c2*s23 + s2*c23) + (2/3)*13*2*s23*c23) + 2*M*(12*s2 + 13*s23)*(12*c2 + 12*13*c2*s23) + (2/3)*13*2*s23*c23) + (2/3)*13*12*s23*c2313*c23); $D113 = m3*(l2*l3*s2*c23 + (2/3)*l3^2*s23*c23) + 2*M*l3*c23*(l2*s2 + l3*s23);$ D211 = -(1/2)*D112;D223 = -12*13*s3*(m3 + 2*M);D233 = -12*13*s3*((1/3)*m3 + M);D311 = (1/2)*D113;D322 = -(1/2)*D223;

%--Coriolis vector: c1 = D112*dq1*dq2 + D113*dq1*dq3; $c2 = D211*dq1^{2} + D223*dq2*dq3 + D233*dq3^{2};$ $c3 = D311*dq1^{2} + D322*dq2^{2};$

C = [c1; c2; c3];

```
 \begin{split} &\%\text{--Gravity vector:}\\ g1 = 0;\\ g2 = g^*((1/2)^*m2^*l2^*s2 + m3^*(l2^*s2 + (1/2)^*l3^*s23) + M^*(l2^*s2 + l3^*s23));\\ g3 = g^*((1/2)^*m3^*l3^*s23 + M^*l3^*s23); \end{split}
```

G = [g1; g2; g3];

%--Inverse inertia matrix:

InvM = inv(H);

%--(Inverse inertia matrix)*(Coriolis vector):

InvMC = InvM*C;

%--(Inverse inertia matrix)*(Gravity vector):

InvMG = InvM*G;

%--(Inverse inertia matrix)*(control vector):

InvMU = InvM*U;

%----Dinamika 2-DOF robota s NPID regulatorom u povratnoj vezi-----%

 $\begin{array}{l} dy(1) = y(2);\\ dy(2) = -InvMC(1) - InvMG(1) + InvMU(1);\\ dy(3) = y(4);\\ dy(4) = -InvMC(2) - InvMG(2) + InvMU(2);\\ dy(5) = y(6);\\ dy(6) = -InvMC(3) - InvMG(3) + InvMU(3); \end{array}$

%---Integratori PID controllera-----%

 $\begin{array}{l} dy(7) = sss1 + R*tanh(Kth*sss1); \\ dy(8) = sss2 + R*tanh(Kth*sss2); \\ dy(9) = sss3 + R*tanh(Kth*sss3); \end{array}$

%---upravljacke varijable za izlaz-----%

dy(10) = u1; dy(11) = u2;dy(12) = u3;

ISE kriterij

% ISE.m $function \ Y = ISE(x); \label{eq:Y}$ $Y = (T/length(x))^*(x'^*x); \label{eq:Y}$